HexaGAN: Generative Adversarial Nets for Real World Classification

Uiwon Hwang*, Dahuin Jung, and Sungroh Yoon

Seoul National University Electrical and Computer Engineering

ICML | 2019

* speaker

• Missing data problem

• Class imbalance problem

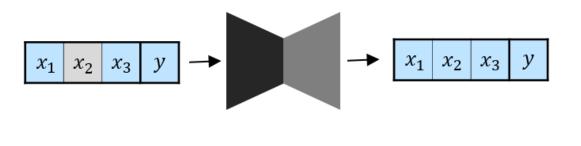
• Missing label problem

- Missing data problem
 - Missing data imputation
 - filling missing elements in a data level

• Class imbalance problem

• Missing label problem

- Missing data problem
 - Missing data imputation
 - filling missing elements in a data level
- Class imbalance problem
 - Class-conditional generation
 - Imputing the entire elements of a sample conditioned on a label
- Missing label problem



- Missing data problem
 - Missing data imputation
 - filling missing elements in a data level
- Class imbalance problem
 - Class-conditional generation
 - Imputing the entire elements of a sample conditioned on a label
- Missing label problem
 - Semi-supervised learning
 - Imputing missing class labels using a classifier

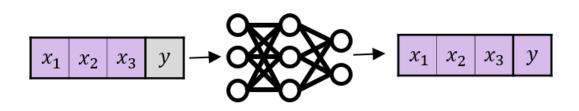
 x_1

x₂

 x_1

 x_3

у



y

 $x_2 | x_3 |$

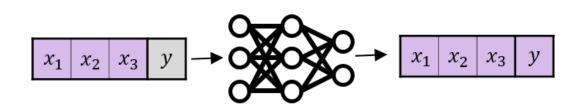
• Missing data problem

- Missing data imputation
- filling missing elements in a data level
- Class imbalance problem
 - Class-conditional generation
 - Imputing the entire elements of a sample conditioned on a label

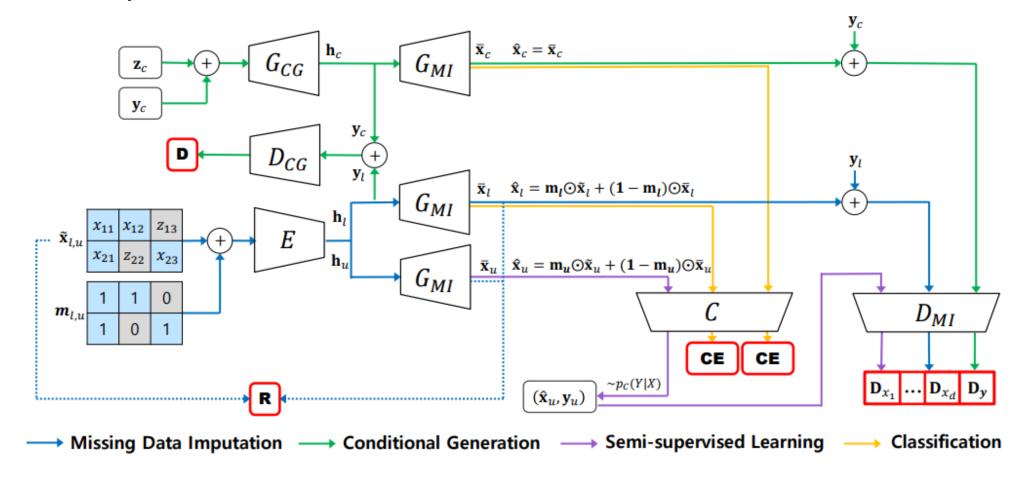
• Missing label problem

- Semi-supervised learning
- Imputing missing class labels using a classifier

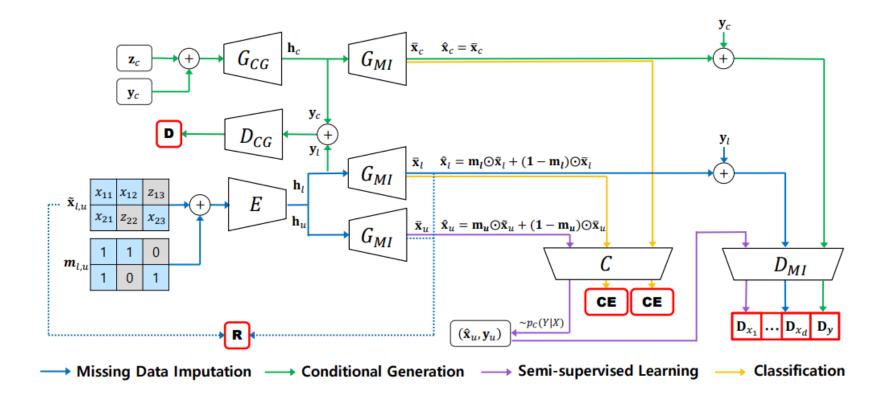
Keyword: Imputation



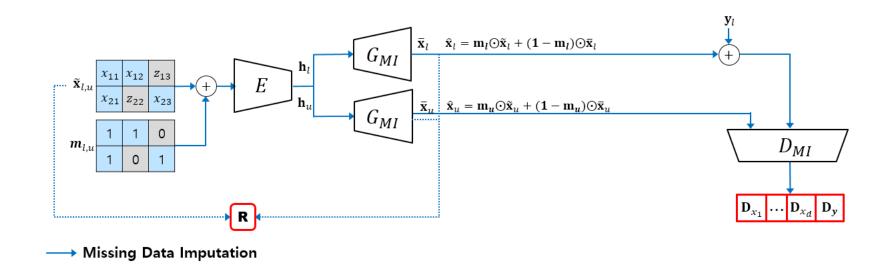
• We propose a generative adversarial network to solve the problems in real world classification **simultaneously**



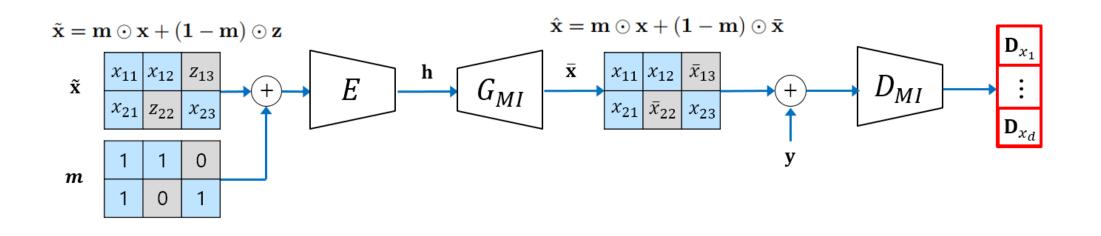
- **Missing data (element-wise) imputation** (to solve the missing data problem)
 - Components
 - *E*: transfers both labeled and unlabeled instances into the hidden space
 - *G_{MI}*: imputes missing data
 - $D_{MI}(\cdot)_{1:d}$: distinguishes b/w missing and non-missing elements



- **Missing data (element-wise) imputation** (to solve the missing data problem)
 - Components
 - *E*: transfers both labeled and unlabeled instances into the hidden space
 - *G_{MI}*: imputes missing data
 - $D_{MI}(\cdot)_{1:d}$: distinguishes b/w missing and non-missing elements



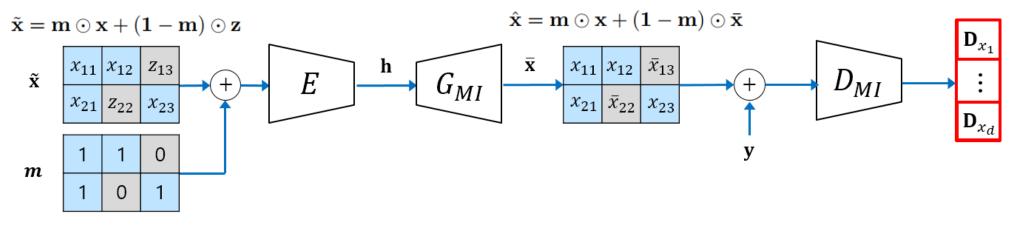
- **Missing data (element-wise) imputation** (to solve the missing data problem)
 - Components
 - *E*: transfers both labeled and unlabeled instances into the hidden space
 - *G_{MI}*: imputes missing data
 - $D_{MI}(\cdot)_{1:d}$: distinguishes b/w missing and non-missing elements



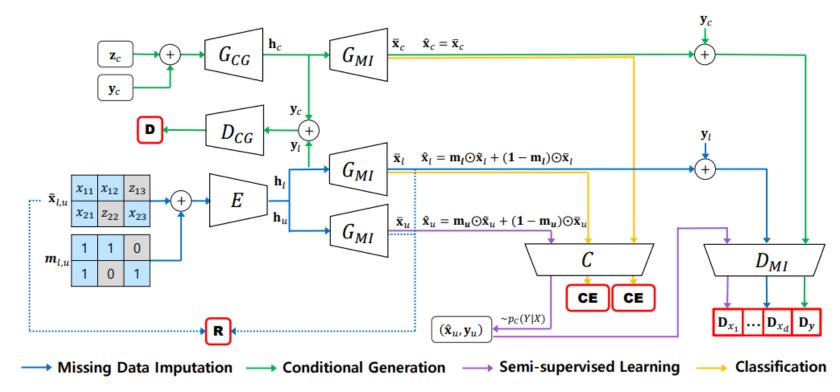
- **Missing data (element-wise) imputation** (to solve the missing data problem)
 - Components
 - *E*: transfers both labeled and unlabeled instances into the hidden space
 - *G_{MI}*: imputes missing data
 - $D_{MI}(\cdot)_{1:d}$: distinguishes b/w missing and non-missing elements
 - A novel element-wise adversarial loss function and gradient penalty

•
$$\max_{G_{MI}} \min_{D_{MI}} \sum_{i=1}^{d} \mathbb{E}_{\hat{\mathbf{x}},\mathbf{y},\mathbf{m}} \left[(1-m_i) \cdot D_{MI}(\hat{\mathbf{x}},\mathbf{y})_i \right] - \mathbb{E}_{\hat{\mathbf{x}},\mathbf{y},\mathbf{m}} \left[m_i \cdot D_{MI}(\hat{\mathbf{x}},\mathbf{y})_i \right]$$

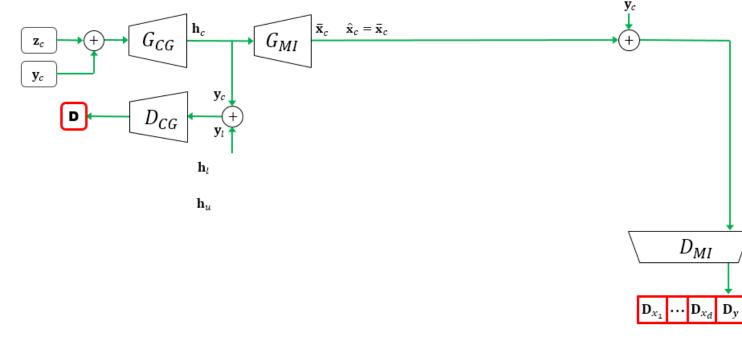
•
$$\mathcal{L}_{\mathrm{GP}_{MI}} = \sum_{i=1}^{d} \mathbb{E}_{p_{\mathcal{D}}(x_i)} \left[||\nabla_{\hat{\mathbf{x}}} D_{MI}(\hat{\mathbf{x}})_i||_2^2 \right]$$



- Class conditional generation (to solve the class imbalance problem)
 - Components
 - G_{CG} : creates conditional hidden vectors \mathbf{h}_c
 - D_{CG} : determines whether a hidden vector is from the dataset or has been created by G_{CG}
 - G_{MI} generates the entire elements conditioned on the minority class

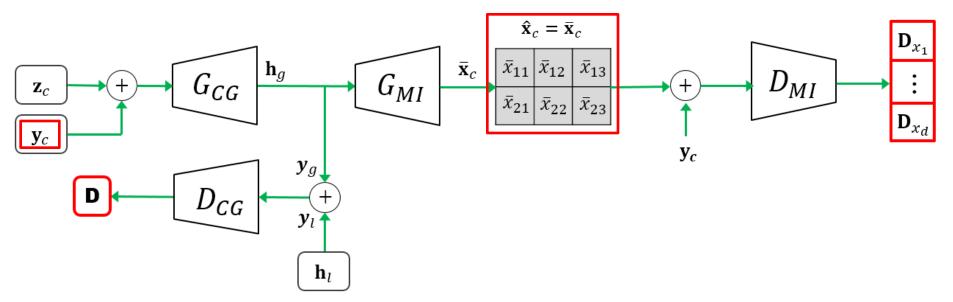


- **Class conditional generation** (to solve the class imbalance problem)
 - Components
 - G_{CG} : creates conditional hidden vectors \mathbf{h}_c
 - D_{CG} : determines whether a hidden vector is from the dataset or has been created by G_{CG}
 - G_{MI} generates the entire elements conditioned on the minority class

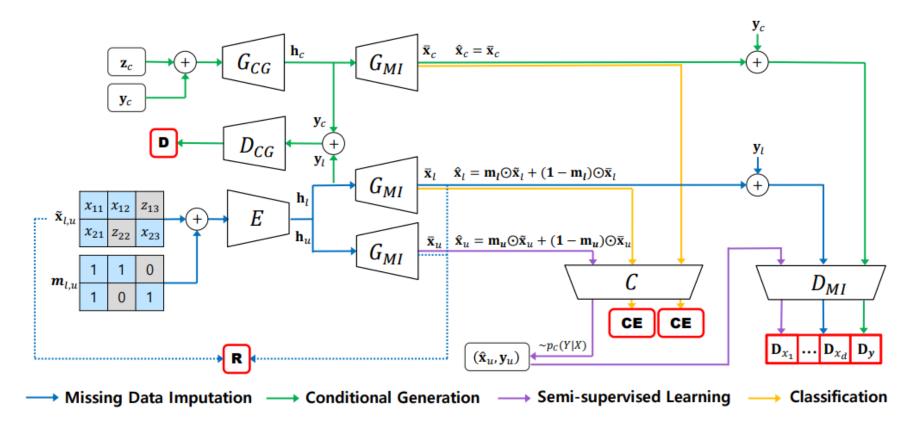


Conditional Generation

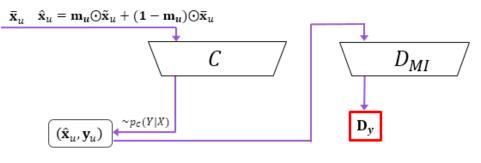
- **Class conditional generation** (to solve the class imbalance problem)
 - Components
 - *G_{CG}*: creates conditional hidden vectors **h**_c
 - D_{CG} : determines whether a hidden vector is from the dataset or has been created by G_{CG}
 - *G_{MI}* generates the entire elements conditioned on the minority class
 - Losses
 - WGAN loss + zero-centered gradient penalty
 - Add Loss of G_{MI} calculated from $\hat{\mathbf{x}}_c$ and the cross entropy of $(\hat{\mathbf{x}}, \mathbf{y}_c)$ to G_{CG}



- Semi-supervised learning (to solve the missing label problem)
 - Components
 - *C*: estimates class labels. This also works as the label generator
 - $D_{MI}(\cdot)_{d+1}$: distinguishes b/w real and pseudo (fake) labels



- Semi-supervised learning (to solve the missing label problem)
 - Components
 - *C*: estimates class labels. This also works as the label generator
 - $D_{MI}(\cdot)_{d+1}$: distinguishes b/w real and pseudo (fake) labels
 - We adopt the pseudo-labeling technique of TripleGAN (Li et al., NIPS 2017)
 - The two components are related adversarially
 - $L_C = -\mathbb{E}_{\mathbf{y}_u | \hat{\mathbf{x}}_u \sim p_C} \left[D_{MI}(\hat{\mathbf{x}}_u, \mathbf{y}_u)_{d+1} \right]$
 - $L_{D_{MI}}^{d+1} = \mathbb{E}_{\mathbf{y}_u | \hat{\mathbf{x}}_u \sim p_C} \left[D_{MI}(\hat{\mathbf{x}}_u, \mathbf{y}_u)_{d+1} \right] \mathbb{E}_{\mathbf{y} | \hat{\mathbf{x}} \sim p_{data}} \left[D_{MI}(\hat{\mathbf{x}}, \mathbf{y})_{d+1} \right]$

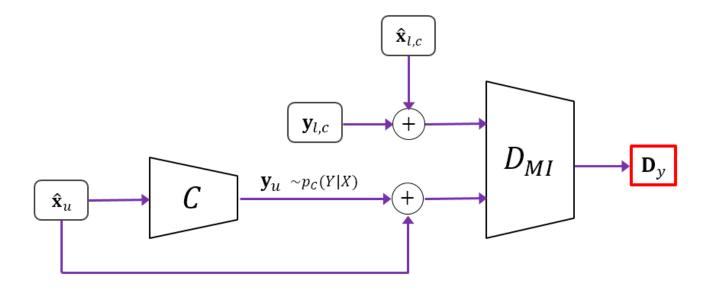


→ Semi-supervised Learning

- Semi-supervised learning (to solve the missing label problem)
 - Components
 - *C*: estimates class labels. This also works as the label generator
 - $D_{MI}(\cdot)_{d+1}$: distinguishes b/w real and pseudo (fake) labels
 - We adopt the pseudo-labeling technique of TripleGAN (Li et al., NIPS 2017)
 - The two components are related adversarially

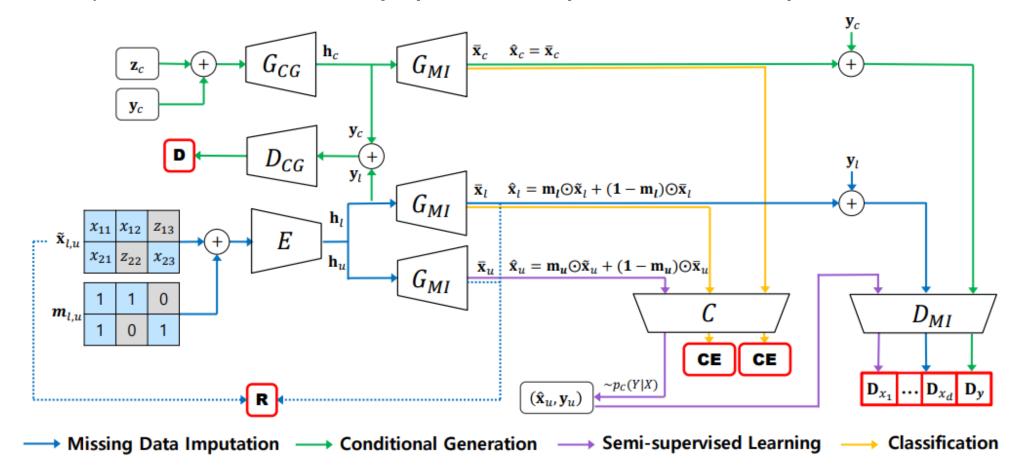
•
$$L_C = -\mathbb{E}_{\mathbf{y}_u | \hat{\mathbf{x}}_u \sim p_C} \left[D_{MI}(\hat{\mathbf{x}}_u, \mathbf{y}_u)_{d+1} \right]$$

•
$$L_{D_{MI}}^{d+1} = \mathbb{E}_{\mathbf{y}_u | \hat{\mathbf{x}}_u \sim p_C} \left[D_{MI}(\hat{\mathbf{x}}_u, \mathbf{y}_u)_{d+1} \right] - \mathbb{E}_{\mathbf{y} | \hat{\mathbf{x}} \sim p_{data}} \left[D_{MI}(\hat{\mathbf{x}}, \mathbf{y})_{d+1} \right]$$



Overview of HexaGAN (revisited)

• The six components of HexaGAN interplay to solve the problems effectively



Theorems

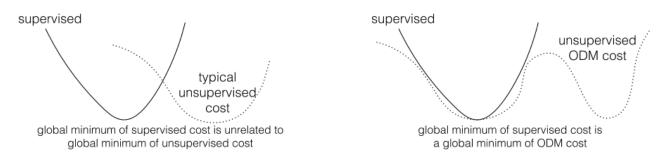
- Theorem 1: Global optimality of $p(x|m_i = 1) = p(x|m_i = 0)$ for HexaGAN
 - A generator distribution $p(x|m_i = 0)$ is a global optimum for the min-max game of G_{MI} and D_{MI} , if and only if $p(x|m_i = 1) = p(x|m_i = 0)$ for all $x \in \mathbb{R}^d$, except possibly on a set of zero Lebesgue measure.

Theorems

- Theorem 1: Global optimality of $p(x|m_i = 1) = p(x|m_i = 0)$ for HexaGAN
 - A generator distribution $p(x|m_i = 0)$ is a global optimum for the min-max game of G_{MI} and D_{MI} , if and only if $p(x|m_i = 1) = p(x|m_i = 0)$ for all $x \in \mathbb{R}^d$, except possibly on a set of zero Lebesgue measure.
- Theorem 2: The adversarial loss for **semi-supervised learning** is the **ODM cost**
 - Output distribution matching (ODM) cost function (Sutskever et al., ICLR workshop 2016)

 $\operatorname{Distr}\left[F(x)\right] = \operatorname{Distr}\left[y\right]$

• the global minimum of the supervised cost function is also a global minimum of the ODM cost function



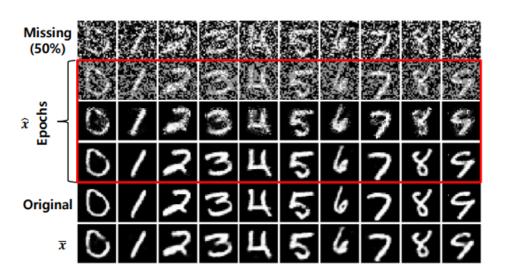
• Optimizing the adversarial losses for C and $D_{MI}(\cdot)_{d+1}$ imposes an unsupervised constraint on C. Then, the adversarial losses for **semi-supervised learning in HexaGAN satisfy the definition of the ODM cost.** $W(\text{Distr}[C(\hat{\mathbf{x}}_u)], \text{Distr}[\mathbf{y}]) \to 0 \Rightarrow \text{Distr}[C(\hat{\mathbf{x}}_u)] = \text{Distr}[\mathbf{y}]$

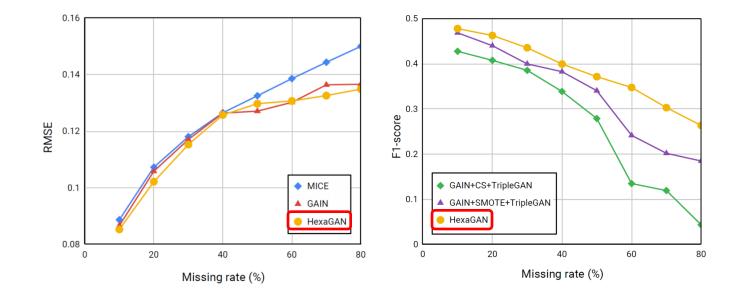
Experimental Results

- Missing data imputation
 - HexaGAN shows good performances on various real world datasets
 - Medical, financial, vision, ...

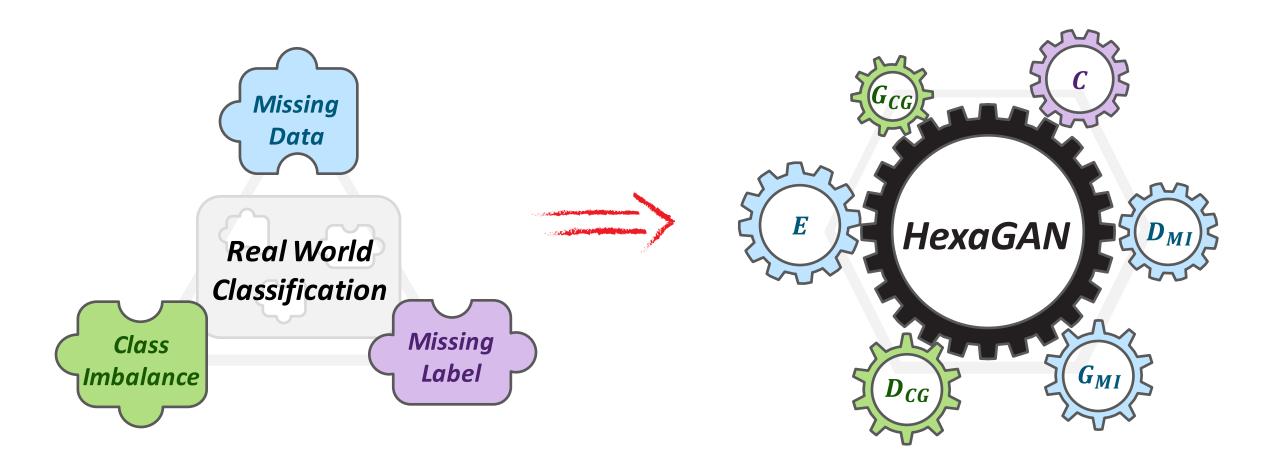
Method	Breast	Credit	Wine	Madelon	MNIST
Zeros	0.2699	0.2283	0.4213	0.5156	0.3319
Matrix	0.0976	0.1277	0.1772	0.1456	0.2540
K-NN	0.0872	0.1128	0.1695	0.1530	0.2267
MICE	0.0842	0.1073	0.1708	0.1479	0.2576
Autoencoder	0.0875	0.1073	0.1481	0.1426	0.1506
GAIN	0.0878	0.1059	0.1406	0.1426	0.1481
HexaGAN	0.0769	0.1022	0.1372	0.1418	0.1452

	Method	Breast	Credit	Wine	Madelon
)	MICE + CS + TripleGAN	0.9417 ± 0.0044	0.3836 ± 0.0052	0.9704 ± 0.0043	0.6681 ± 0.0028
7	GAIN + CS + TripleGAN	0.9684 ± 0.0102	0.4076 ± 0.0038	0.9727 ± 0.0046	0.6690 ± 0.0027
5	MICE + SMOTE + TripleGAN	0.9434 ± 0.0060	0.4163 ± 0.0029	0.9756 ± 0.0037	0.6712 ± 0.0008
5	GAIN + SMOTE + TripleGAN	0.9672 ± 0.0063	0.4401 ± 0.0031	0.9735 ± 0.0063	0.6703 ± 0.0032
-	HexaGAN	0.9762 ± 0.0021	0.4627 ± 0.0040	0.9814 ± 0.0059	0.6716 ±0.0019





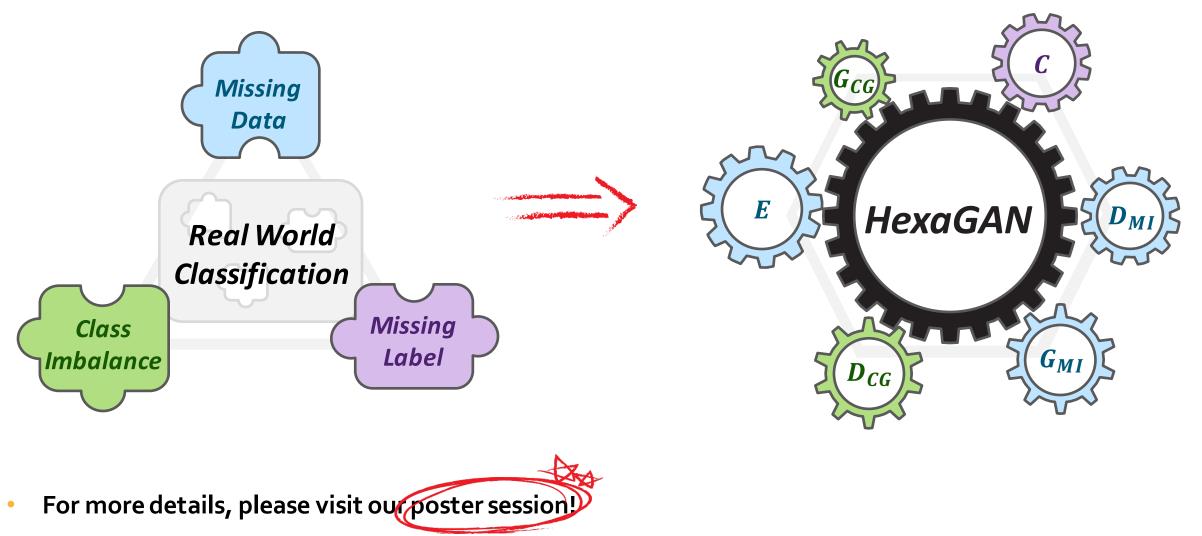
Conclusions



• For more details, please visit our poster session!

• June 11th (Today), 6:30 – 9:00 pm, Pacific Ballroom #20

Conclusions



June 11th (Today), 6:30 – 9:00 pm, Pacific Ballroom #20