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Generalized Formulation for GANs

min E; p,[ (f(9(z))]+Ex p[ (FOO)L;

f2F (1)
in E > (f(9(2)))];
min & ».[*(FQ@)]
where
P,: the source distribution in R"z; ‘ ., R Y R are loss metrics. ‘
Pr: the target (real) distribution in R™;
g: the generative function Rz ¥ R™; GAN  : ¢(x)=9( x)= log(a( X))
f: the discriminative function R™ ¥ R: WGAN  : ¢(x) =( x) =X
G: the generative function space; LSGAN :  ¢(x) =9( x) = (x +a)

F: the discriminative function space;

We denote the generation distribution by Pg.
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The Gradient Uninformativeness

The problem that the gradient from the discriminator does not contain any informative
about the real distribution.

A new perspective for the training instability / convergence issue of GANS.

For GANs with unrestricted F:

f (x) =argmin Pg(x) (f(x))+Pr(x) (f(x)); 8x: 2)
f(x)2R

f (x) is independently defined and only reflects the local densities Py(x) and Pg(X);

rif (x) does not reflect any information about the other distribution, if the supports of
two distributions are disjoint.
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The Gradient Uninformativeness

Unrestricted GANs MUST suffer from this problem
Restricted GANs May suffer from this problem

GANs with W-Distance May suffer from this problem

Lipschitz GANs DO NOT suffer from this problem
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Lipschitz Generative Adversarial Nets (LGANSs)

We require

Zhiming Zhou

and

f2

minE; v, [ (1(9(2)))]

to sat

isfy:

mig E; p,[ (f(9(2))]+Ex p,[ (F(X))]+

k(f)*;

‘ k(f): Lipschitz constant of f ‘

’Any increasing function with non-decreasing derivative. ‘
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Lipschitz Generative Adversarial Nets (LGANSs)

Theoretically guaranteed properties:

The optimal discriminative function f exists;

If is strictly convex, then f is unique;

There exists a unique Nash equilibrium where Py = Py and k(f ) =0;
Do not suffer from gradient uninformativeness;

For each generated sample, the gradient directly points towards a real sample.
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Experiments: Gradient Uninformativeness

Gradient uninformativeness practically behaviors as noisy gradient.

Case 1 — [452=3.85E+00 Case 2 — |2|=4.09E-01
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Experiments: rxf (x) in LGANs

rxf (X) directly point towards real samples.
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