## **Non-Parametric Priors For Generative Adversarial Networks**

<u>Rajhans Singh<sup>1</sup></u>, Pavan Turaga<sup>1,2</sup>, Suren Jayasuriya<sup>1,2</sup>, Ravi Garg<sup>3</sup>, Martin W. Braun<sup>3</sup>

<sup>1</sup>School of Electrical, Computer, and Energy Engineering, Arizona State University <sup>2</sup>School of Arts, Media and Engineering, Arizona State University <sup>3</sup>Intel Corporation





### Generative Adversarial Network (GAN)



## **Distribution Mismatch Issue**

- Simple parametric latent space distributions like Normal and Uniform suffer from distribution mismatch issue: **the prior distribution does not match the interpolated point's distribution.**
- The GANs trained on the prior points to generate realistic images, when used to interpolate between points, **often loose fidelity in image quality** due to distribution mismatch.



#### **Non-Parametric Distribution**

• If  $x_1, x_2 \sim f_X(x)$ , then the pdf of the interpolated point:  $(1 - \lambda)x_1 + \lambda x_2$ , for some  $\lambda \in [0, 1]$ , is given by

$$Q(x;\lambda) = \frac{1}{|\lambda(1-\lambda)|} f_X\left(\frac{x}{\lambda}\right) * f_X\left(\frac{x}{1-\lambda}\right)$$

- The goal is to minimize the KL divergence between  $P(x) = f_X(x)$  and  $Q(x; \lambda)$ .
- P(x) is restricted a compact domain, i.e. [0,1] and discretize into  $2^{10}$  bins to obtain a tractable solution.
- Variance constraint is added to avoid delta function.

 $\min_{P} f(P||Q)$ s.t. $\sum_{i=1}^{n} p_i = 1, \frac{1}{n} (\sum_{i=1}^{n} i^2 p_i - (\sum_{i=1}^{n} i p_i)^2) \ge \varepsilon, \ p_i \ge 0$ 

#### Non-Parametric Prior



## Results



Interpolation (left to right) through the origin on CelebA dataset

Gamma Prior: [Kilcher et al., 2018] Cauchy Prior: [Lesniak ´ et al., 2019]

## **Quantitative Results**

| Distribution   | CelebA          |           |           |           | LSUN Bedroom    |           |           |           |
|----------------|-----------------|-----------|-----------|-----------|-----------------|-----------|-----------|-----------|
|                | Inception Score |           | FID Score |           | Inception Score |           | FID Score |           |
|                | Prior           | Mid-Point | Prior     | Mid-Point | Prior           | Mid-Point | Prior     | Mid-Point |
| Uniform        | 1.843           | 1.369     | 24.055    | 40.371    | 2.969           | 2.649     | 42.998    | 76.412    |
| Normal         | 1.805           | 1.371     | 26.173    | 42.136    | 2.812           | 2.591     | 64.682    | 108.49    |
| Gamma          | 1.776           | 1.618     | 29.912    | 28.608    | 2.930           | 2.808     | 162.44    | 161.37    |
| Cauchy         | 1.625           | 1.628     | 59.601    | 60.128    | 3.148           | 3.149     | 97.057    | 97.109    |
| Non-parametric | 1.933           | 1.681     | 17.735    | 19.115    | 3.028           | 2.769     | 27.857    | 31.472    |

# Conclusion

- We derive a non-parametric approach to search for a prior which can address the distribution mismatch problem.
- The proposed prior distribution **provides better qualitative and quantitative results** as compared to the standard priors such as Normal and Uniform distributions.
- The FID score and the Inception score (IS) using the proposed prior are either the best, or very close to the best on all the four tested datasets.
- For future work it would be interesting to extend this approach to extrapolation problems, or impose other interesting statistical or physically-motivated constraints over latent spaces.