Entropic GANs meet VAEs: A Statistical Approach to Compute Sample Likelihoods in GANs

Yogesh Balaji

with Hamed Hassani, Rama Chellappa and Soheil Feizi

Generative Adversarial Networks

GANs are very successful at generating samples from a data distribution

BigGAN (Brock et al., 2018)

StyleGAN (Karras et al., 2018)

Generative models

Classical Approach: Fitting an explicit model using maximum likelihood Modern Approach:
Generative Adversarial
Networks (GANs)
Lacks an explicit density model

Generative models

Classical Approach:

Fitting an explicit model using maximum likelihood

Modern Approach:

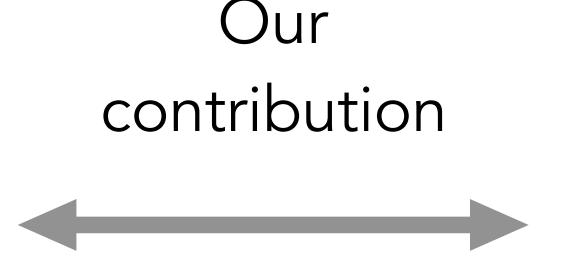
Generative Adversarial

Networks (GANs)

Lacks an explicit density model

Generative models

Classical Approach: Fitting an explicit model using maximum likelihood



Modern Approach:
Generative Adversarial
Networks (GANs)
Lacks an explicit density model

Entropic GANs

Entropic GANs are Wasserstein GANs with entropy regularization

Primal

$$\min_{P_{Y,G(X)}} \mathbf{E} \left[l(Y, G(X)) \right] - H(P_{Y,G(X)})$$

Dual

$$\begin{split} \min \max_{G} \, \mathbf{E} \big[D_1(Y) \big] - \mathbf{E} \big[D_2(G(X)) \big] - \lambda \mathbf{E}_{P_Y \times P_{\hat{Y}}} \big[\exp v(\mathbf{y}, \hat{\mathbf{y}}) / \lambda \big] \\ \text{where} \quad v(\mathbf{y}, \hat{\mathbf{y}}) := D_1(\mathbf{y}) - D_2(\hat{\mathbf{y}}) - l(\mathbf{y}, \hat{\mathbf{y}}) \\ \downarrow \\ \text{Loss function between} \\ \text{two samples} \end{split}$$

Notation

Y Real data random variable

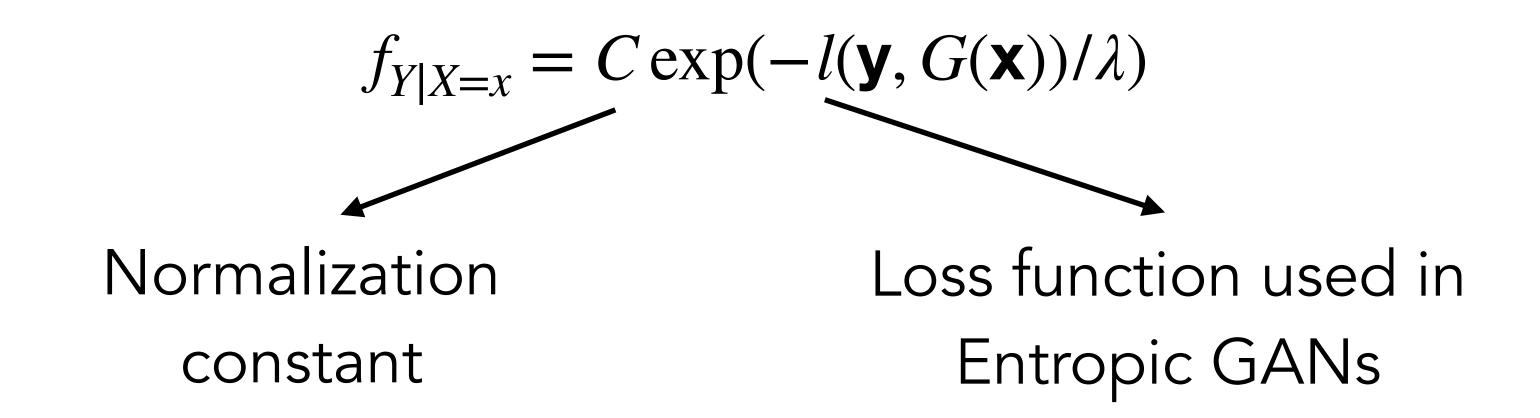
X Noise random variable

 $G: \mathbb{R}^r \to \mathbb{R}^d$ Generator function

 $\hat{Y} := G(X)$

An Explicit data model for Entropic GAN

We construct an explicit probability model for data distribution using GANs



Main theorem

$$E_{P_{Y}}[\log f_{Y}(Y)] \geq -\frac{1}{\lambda}\{E_{P_{Y,\hat{Y}}}[l(Y,\hat{Y})] - \lambda H(P_{Y,\hat{Y}})\} + constants$$

$$\text{Entropic GAN}$$
 objective

Entropic GAN objective is a variational lower-bound of log likelihood

Similar to the evidence lower-bound in Variational Auto-Encoders

Main theorem

$$\begin{split} E_{P_{Y}}[\log f_{Y}(Y)] \geq &-\frac{1}{\lambda}\{E_{P_{Y,\hat{Y}}}[l(Y,\hat{Y})] - \lambda H(P_{Y,\hat{Y}})\} + constants \\ \text{Avg. log likelihoods} \end{split}$$
 Entropic GAN objective

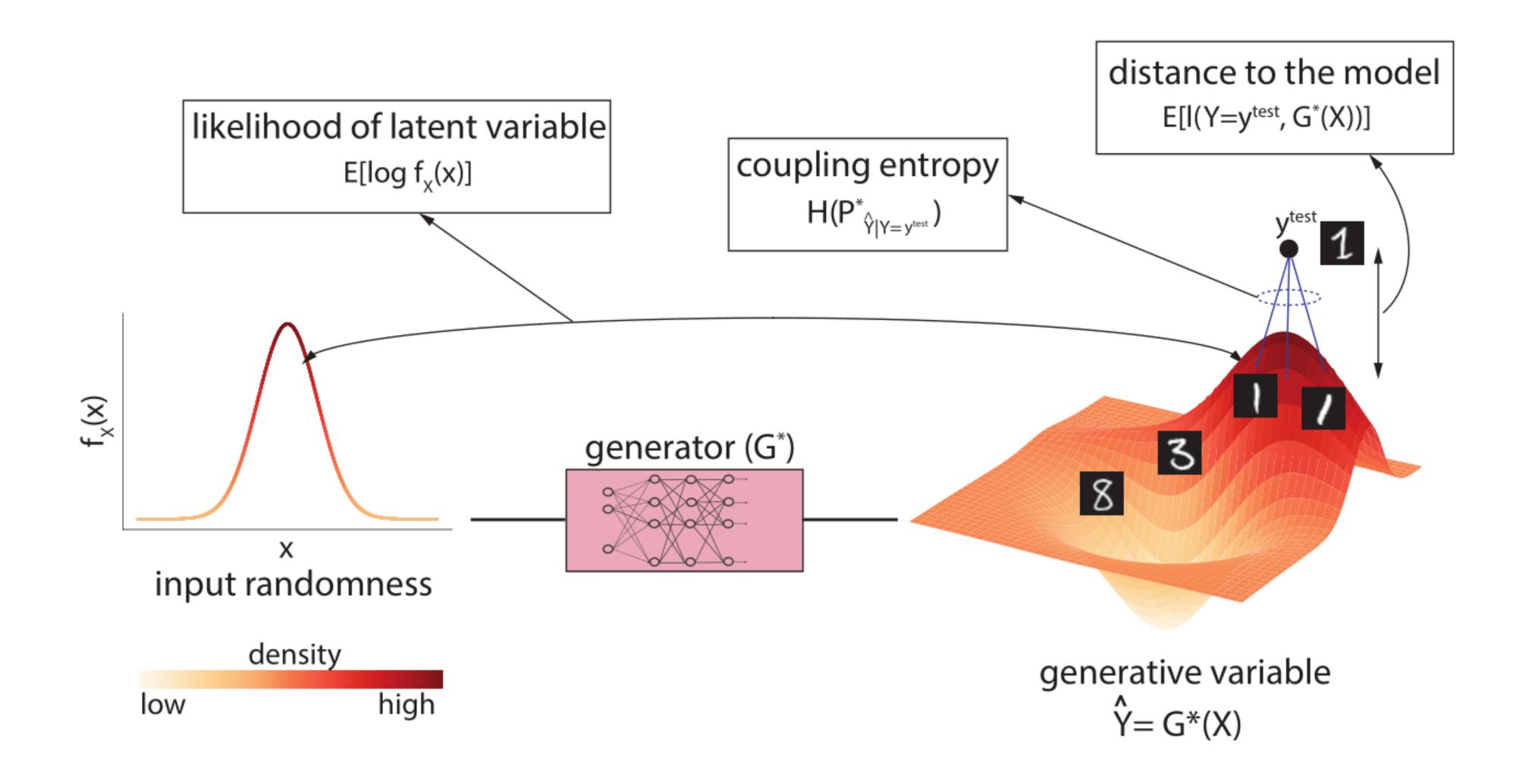
Entropic GANs meet VAEs

Is this bound useful?

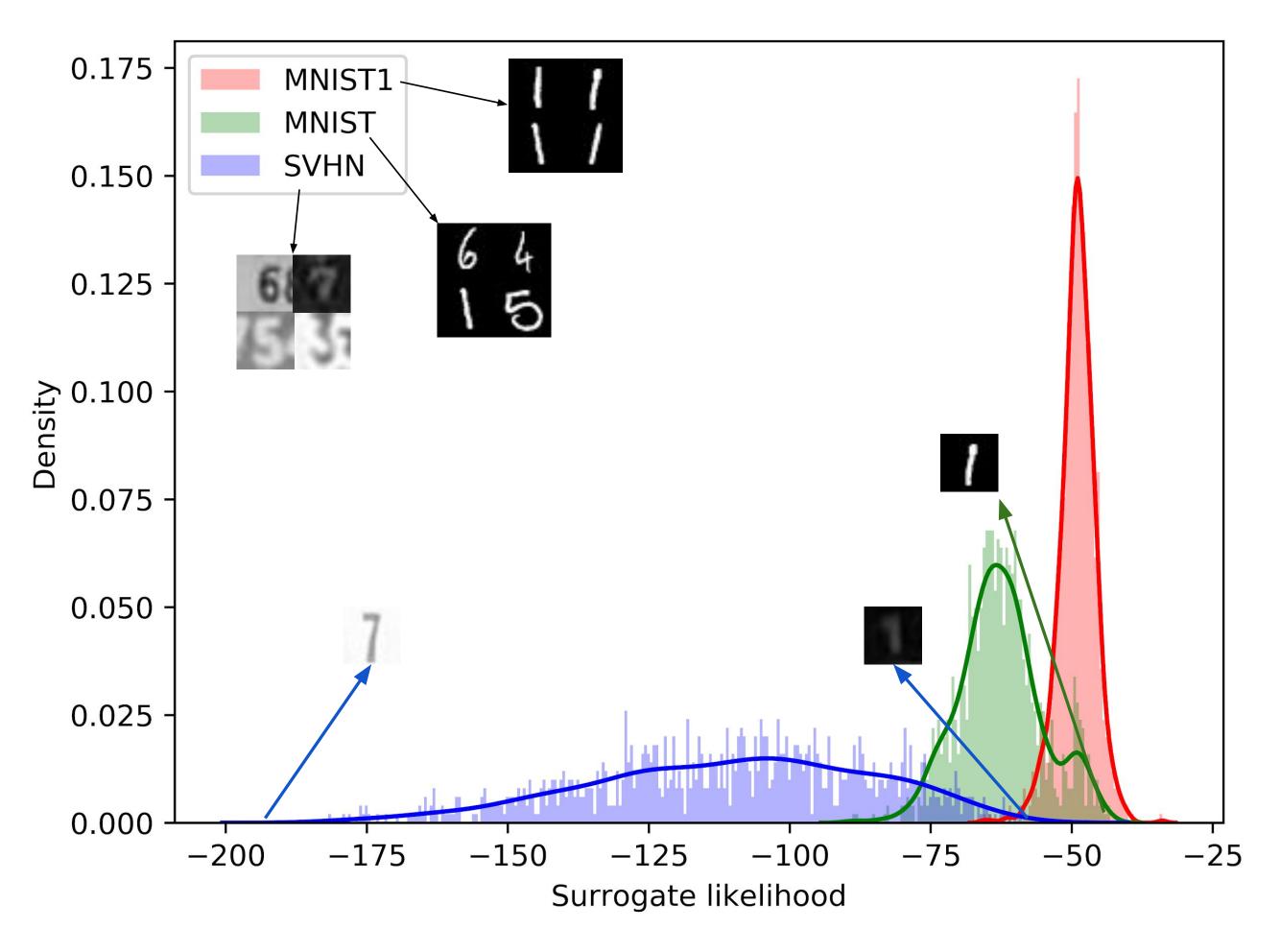
Provides a statistical interpretation to Entropic GAN's objective function

Useful in computing sample likelihoods of test samples

Components of our surrogate likelihood



Likelihood computation



Given a dataset of MNIST-1 digits as source distribution, estimate the likelihood that MNIST and SVHN datasets are drawn from this distribution

Dissimilar datasets have low likelihood

Tightness of the lower-bound

We consider Gaussian input data distribution to compute the tightness of our variational lower-bound

Data dimension	Exact Log-Likelihood	Surrogate Log-Likelihood
5	-16.38	-17.94
10	-35.15	-43.60
20	-58.04	-66.58
30	-91.80	-100.69
64	-203.46	-217.52

Conclusion

Establish a connection between GANs and VAEs by deriving a variational lower-bound for GANs

Provide a principled framework for computing sample likelihoods using GANs

Please stop by Poster# 17

Code available at https://github.com/yogeshbalaji/
EntropicGANs_meet_VAEs

