Flat Metric Minimization with Applications in Generative Modeling

Thomas Möllenhoff Daniel Cremers

Latent concepts often induce an *orientation* of the data.

Latent concepts often induce an *orientation* of the data. Tangent vectors to the "data manifold":

Stroke thickness or shear of MNIST digit.

Latent concepts often induce an *orientation* of the data. Tangent vectors to the "data manifold":

- Stroke thickness or shear of MNIST digit.
- Camera position, lighting/material in a 3D scene.

Latent concepts often induce an *orientation* of the data. Tangent vectors to the "data manifold":

- Stroke thickness or shear of MNIST digit.
- Camera position, lighting/material in a 3D scene.
- Arrow of time (videos, time-series data, ...)

Latent concepts often induce an *orientation* of the data. Tangent vectors to the "data manifold":

- Stroke thickness or shear of MNIST digit.
- Camera position, lighting/material in a 3D scene.
- Arrow of time (videos, time-series data, ...)

Contributions:

We propose the novel perspective to represent oriented data with k-currents from geometric measure theory.

Latent concepts often induce an *orientation* of the data. Tangent vectors to the "data manifold":

- Stroke thickness or shear of MNIST digit.
- Camera position, lighting/material in a 3D scene.
- Arrow of time (videos, time-series data, ...)

Contributions:

- We propose the novel perspective to represent oriented data with k-currents from geometric measure theory.
- Using this viewpoint within the context of GANs, we learn a generative model which behaves *equivariantly* to specified tangent vectors.

Differential geometry, generalized through measure theory to deal with surfaces that are not necessarily smooth.

- Differential geometry, generalized through measure theory to deal with surfaces that are not necessarily smooth.
- k-currents ≈ generalized (possibly quite irregular) oriented k-dimensional surfaces in d-dimensional space.

- Differential geometry, generalized through measure theory to deal with surfaces that are not necessarily smooth.
- k-currents ≈ generalized (possibly quite irregular) oriented k-dimensional surfaces in d-dimensional space.
- The class of currents we consider form a *linear space*. It includes oriented k-dimensional surfaces as elements.

► *T* and *S* are 1-currents representing the data and the (partially oriented) latents.

- T and S are 1-currents representing the data and the (partially oriented) latents.
- Pushforward operator $g_{\theta \sharp}$, yields transformed current $g_{\theta \sharp}$ S.

- ▶ *T* and *S* are 1-currents representing the data and the (partially oriented) latents.
- Pushforward operator $g_{\theta \sharp}$, yields transformed current $g_{\theta \sharp}$ S.
- We propose to use the *flat metric* \mathbb{F}_{λ} as a distance between g_{\sharp} S and T.

- ▶ *T* and *S* are 1-currents representing the data and the (partially oriented) latents.
- Pushforward operator $g_{\theta \sharp}$, yields transformed current $g_{\theta \sharp}$ S.
- We propose to use the *flat metric* \mathbb{F}_{λ} as a distance between $g_{\sharp}S$ and T.
- For k = o the flat metric is closely related to the Wasserstein-1 distance and positive o-currents with unit mass are probability distributions.

k-dimensional orientation in d-dimensional space

Simple k-vectors $v = v_1 \land \dots \land v_k \in \Lambda_k \mathbf{R}^d$ describe oriented k-dimensional subspaces together with an area in \mathbf{R}^d :

k-dimensional orientation in d-dimensional space

Simple k-vectors $v = v_1 \land \dots \land v_k \in \Lambda_k \mathbf{R}^d$ describe oriented k-dimensional subspaces together with an area in \mathbf{R}^d :

• The set of simple k-vectors forms a nonconvex cone in the vector space $\Lambda_k \mathbf{R}^d$.

k-dimensional orientation in d-dimensional space

Simple k-vectors $v = v_1 \land \dots \land v_k \in \Lambda_k \mathbf{R}^d$ describe oriented k-dimensional subspaces together with an area in \mathbf{R}^d :

• The set of simple k-vectors forms a nonconvex cone in the vector space $\Lambda_k \mathbf{R}^d$.

For
$$v = v_1 \land \cdots \land v_k$$
, $w = w_1 \land \cdots \land w_k$:

$$\langle v, w \rangle = \det(V^{\top}W), |v| = \sqrt{\langle v, v \rangle}.$$

• Orientation of a k-dimensional manifold \mathcal{M} : continuous simple k-vector map $\tau_{\mathcal{M}} : \mathcal{M} \to \Lambda_k \mathbf{R}^d$, $|\tau_{\mathcal{M}}(z)| = 1$ and $T_z \mathcal{M}$ "spanned" by $\tau_{\mathcal{M}}(z)$

- Orientation of a k-dimensional manifold \mathcal{M} : continuous simple k-vector map $\tau_{\mathcal{M}} : \mathcal{M} \to \Lambda_k \mathbf{R}^d$, $|\tau_{\mathcal{M}}(z)| = 1$ and $T_z \mathcal{M}$ "spanned" by $\tau_{\mathcal{M}}(z)$
- Differential form: k-covector field $\omega : \mathbf{R}^d \to \Lambda^k \mathbf{R}^d$

- Orientation of a k-dimensional manifold \mathcal{M} : continuous simple k-vector map $\tau_{\mathcal{M}} : \mathcal{M} \to \Lambda_k \mathbf{R}^d$, $|\tau_{\mathcal{M}}(z)| = 1$ and $T_z \mathcal{M}$ "spanned" by $\tau_{\mathcal{M}}(z)$
- Differential form: k-covector field $\omega : \mathbf{R}^d \to \Lambda^k \mathbf{R}^d$
- Integration of a k-form over an oriented k-dimensional manifold:

$$\int_{\mathcal{M}} \omega \coloneqq \int_{\mathcal{M}} \langle \omega(z), \tau_{\mathcal{M}}(z) \rangle d\mathcal{H}^{k}(z) = \llbracket \mathcal{M} \rrbracket(\omega)$$

- Orientation of a k-dimensional manifold \mathcal{M} : continuous simple k-vector map $\tau_{\mathcal{M}} : \mathcal{M} \to \Lambda_k \mathbf{R}^d$, $|\tau_{\mathcal{M}}(z)| = 1$ and $T_z \mathcal{M}$ "spanned" by $\tau_{\mathcal{M}}(z)$
- Differential form: k-covector field $\omega : \mathbf{R}^d \to \Lambda^k \mathbf{R}^d$
- ▶ Integration of a *k*-form over an oriented *k*-dimensional manifold:

$$\int_{\mathcal{M}} \omega \coloneqq \int_{\mathcal{M}} \langle \omega(z), \tau_{\mathcal{M}}(z) \rangle \, d\mathcal{H}^{k}(z) = \llbracket \mathcal{M} \rrbracket(\omega)$$

[[M]] is a k-current. In general, they are continuous linear functionals acting on compactly supported smooth k-forms

- Orientation of a k-dimensional manifold \mathcal{M} : continuous simple k-vector map $\tau_{\mathcal{M}} : \mathcal{M} \to \Lambda_k \mathbf{R}^d$, $|\tau_{\mathcal{M}}(z)| = 1$ and $T_z \mathcal{M}$ "spanned" by $\tau_{\mathcal{M}}(z)$
- Differential form: k-covector field $\omega : \mathbf{R}^d \to \Lambda^k \mathbf{R}^d$
- ▶ Integration of a *k*-form over an oriented *k*-dimensional manifold:

$$\int_{\mathcal{M}} \omega \coloneqq \int_{\mathcal{M}} \langle \omega(z), \tau_{\mathcal{M}}(z) \rangle \, d\mathcal{H}^{k}(z) = \llbracket \mathcal{M} \rrbracket(\omega)$$

[[M]] is a k-current. In general, they are continuous linear functionals acting on compactly supported smooth k-forms

• Mass of a *k*-current:
$$\mathbb{M}(T) = \sup_{\|\omega\|^* \le 1} T(\omega)$$

- Mass of a *k*-current: $\mathbb{M}(T) = \sup_{\|\omega\|^* \le 1} T(\omega)$
- The boundary operator ∂ maps a k-current to a (k-1)-current: $\partial T(\omega) = T(d\omega)$

- Mass of a *k*-current: $\mathbb{M}(T) = \sup_{\|\omega\|^* \le 1} T(\omega)$
- The boundary operator ∂ maps a k-current to a (k-1)-current: $\partial T(\omega) = T(d\omega)$
- Stokes' theorem:

$$\int_{\partial \mathcal{M}} \omega = \int_{\mathcal{M}} d\omega.$$

- Mass of a *k*-current: $\mathbb{M}(T) = \sup_{\|\omega\|^* \le 1} T(\omega)$
- The boundary operator ∂ maps a k-current to a (k-1)-current: $\partial T(\omega) = T(d\omega)$
- Stokes' theorem:

$$\int_{\partial \mathcal{M}} \omega = \int_{\mathcal{M}} d\omega.$$

▶ Normal currents $T \in N_{k,\mathcal{X}}(\mathbf{R}^d)$: Finite mass and boundary mass $\mathbb{M}(T) + \mathbb{M}(\partial T) < \infty$

- Mass of a *k*-current: $\mathbb{M}(T) = \sup_{\|\omega\|^* \le 1} T(\omega)$
- The boundary operator ∂ maps a k-current to a (k-1)-current: $\partial T(\omega) = T(d\omega)$
- Stokes' theorem:

$$\int_{\partial \mathcal{M}} \omega = \int_{\mathcal{M}} d\omega.$$

- ▶ Normal currents $T \in N_{k,\mathcal{X}}(\mathbf{R}^d)$: Finite mass and boundary mass $\mathbb{M}(T) + \mathbb{M}(\partial T) < \infty$
- ► A geometric view on the Wasserstein-1 distance:

$$\mathcal{W}_1(S,T) = \min_{\partial B=S-T} \mathbb{M}(B)$$
. Example: $S = \delta_x$, $T = \delta_y$:

The flat metric

Given two normal k-currents $S \in N_{k,\mathcal{X}}(\mathbf{R}^d)$, $T \in N_{k,\mathcal{X}}(\mathbf{R}^d)$ the flat metric as defined as

$$\mathbb{F}_{\lambda}(S,T) = \min_{S-T=\partial B+A} \mathbb{M}(B) + \lambda \mathbb{M}(A) = \sup_{\substack{\|\omega\|^* \leq \lambda \\ \|d\omega\|^* \leq 1}} (S-T)(\omega).$$

$$S \longrightarrow A = S - T - \partial B$$

The flat metric

Given two normal k-currents $S \in N_{k,\mathcal{X}}(\mathbf{R}^d)$, $T \in N_{k,\mathcal{X}}(\mathbf{R}^d)$ the flat metric as defined as

Federer & Fleming 1960: The flat metric metrizes the weak^{*} convergence on normal currents with uniformly bounded mass and boundary mass.

Flat metric minimization: our theoretical result

 $\min_{\theta \in \Theta} \mathbb{F}_{\lambda}(g_{\theta \sharp}S,T)$

Flat metric minimization: our theoretical result

 $\min_{\theta \in \Theta} \mathbb{F}_{\lambda}(g_{\theta \sharp}S, T)$

Assumptions:

- ▶ Normal currents $S \in N_{k,\mathcal{Z}}(\mathbf{R}^l)$, $T \in N_{k,\mathcal{X}}(\mathbf{R}^d)$.
- ▶ $g: \mathcal{Z} \times \Theta \rightarrow \mathcal{X}$ smooth in *z* with uniformly bounded derivative, loc. Lipschitz in θ .
- Parameter space Θ is compact.

Flat metric minimization: our theoretical result

 $\min_{\theta \in \Theta} \mathbb{F}_{\lambda}(g_{\theta \sharp}S, T)$

Assumptions:

- ▶ Normal currents $S \in N_{k,\mathcal{Z}}(\mathbf{R}^l)$, $T \in N_{k,\mathcal{X}}(\mathbf{R}^d)$.
- ▶ $g: \mathcal{Z} \times \Theta \rightarrow \mathcal{X}$ smooth in *z* with uniformly bounded derivative, loc. Lipschitz in θ .
- Parameter space Θ is compact.

Proposition. The map $\theta \mapsto \mathbb{F}_{\lambda}(g_{\theta \sharp}S, T)$ is Lipschitz continuous.

FlatGAN formulation and implementation

 $\min_{\theta \in \Theta} \mathbb{F}_{\lambda}(g_{\theta \sharp}S, T)$

FlatGAN formulation and implementation

 $[\]min_{\theta \in \Theta} \sup_{\substack{\|\omega\|^* \leq \lambda \\ \|d\omega\|^* \leq 1}} (g_{\theta \sharp} S - T)(\omega)$

FlatGAN formulation and implementation

 $[\]min_{\theta \in \Theta} \sup_{\substack{\|\omega\|^* \leq \lambda \\ \|d\omega\|^* \leq 1}} g_{\theta \sharp} S(\omega) - T(\omega)$

 $[\]min_{\theta \in \Theta} \sup_{\substack{\|\omega\|^* \leq \lambda \\ \|d\omega\|^* \leq 1}} S(g_{\theta}^{\sharp} \omega) - T(\omega)$

$$\min_{\theta \in \Theta} \sup_{\substack{\|\omega\|^* \leq \lambda \\ \|d\omega\|^* \leq 1}} \mathbb{E}_{z \sim \mu} \left[\left\langle \omega \circ g_{\theta}, (\nabla_z g_{\theta} \cdot e_1) \wedge \cdots \wedge (\nabla_z g_{\theta} \cdot e_k) \right\rangle \right] - \frac{1}{N} \sum_{i=1}^N \left\langle \omega(x_i), T_{i,1} \wedge \cdots \wedge T_{i,k} \right\rangle$$

• Implement $\omega : \mathbf{R}^d \to \Lambda^k \mathbf{R}^d$ and $g_\theta : \mathcal{Z} \to \mathcal{X}$ with deep nets

$$\min_{\theta \in \Theta} \sup_{\substack{\|\omega\|^* \leq \lambda \\ \|d\omega\|^* \leq 1}} \mathbb{E}_{z \sim \mu} \left[\left\langle \omega \circ g_{\theta}, (\nabla_z g_{\theta} \cdot e_1) \wedge \cdots \wedge (\nabla_z g_{\theta} \cdot e_k) \right\rangle \right] - \frac{1}{N} \sum_{i=1}^N \left\langle \omega(x_i), T_{i,1} \wedge \cdots \wedge T_{i,k} \right\rangle$$

- Implement $\omega : \mathbf{R}^d \to \Lambda^k \mathbf{R}^d$ and $g_\theta : \mathcal{Z} \to \mathcal{X}$ with deep nets
- Soft penalty for $\|\omega(x)\|^* \le \lambda$, $\|d\omega(x)\|^* \le 1$ (similar to WGAN-GP)

$$\min_{\theta \in \Theta} \sup_{\substack{\|\omega\|^* \leq \lambda \\ \|d\omega\|^* \leq 1}} \mathbb{E}_{z \sim \mu} \left[\left\langle \omega \circ g_{\theta}, (\nabla_z g_{\theta} \cdot e_1) \wedge \cdots \wedge (\nabla_z g_{\theta} \cdot e_k) \right\rangle \right] - \frac{1}{N} \sum_{i=1}^N \left\langle \omega(x_i), T_{i,1} \wedge \cdots \wedge T_{i,k} \right\rangle$$

- Implement $\omega : \mathbf{R}^d \to \Lambda^k \mathbf{R}^d$ and $g_\theta : \mathcal{Z} \to \mathcal{X}$ with deep nets
- Soft penalty for $\|\omega(x)\|^* \le \lambda$, $\|d\omega(x)\|^* \le 1$ (similar to WGAN-GP)
- Compute $\nabla_z g_\theta \cdot e_i$ with two calls to autograd (rop), $\langle \cdot, \cdot \rangle$ by $k \times k$ -determinant

$$\min_{\theta \in \Theta} \sup_{\substack{\|\omega\|^* \leq \lambda \\ \|d\omega\|^* \leq 1}} \mathbb{E}_{z \sim \mu} \left[\left\langle \omega \circ g_{\theta}, (\nabla_z g_{\theta} \cdot e_1) \wedge \cdots \wedge (\nabla_z g_{\theta} \cdot e_k) \right\rangle \right] - \frac{1}{N} \sum_{i=1}^N \left\langle \omega(x_i), T_{i,1} \wedge \cdots \wedge T_{i,k} \right\rangle$$

- Implement $\omega : \mathbf{R}^d \to \Lambda^k \mathbf{R}^d$ and $g_\theta : \mathcal{Z} \to \mathcal{X}$ with deep nets
- Soft penalty for $\|\omega(x)\|^* \le \lambda$, $\|d\omega(x)\|^* \le 1$ (similar to WGAN-GP)
- Compute $\nabla_z g_\theta \cdot e_i$ with two calls to autograd (rop), $\langle \cdot, \cdot \rangle$ by $k \times k$ -determinant
- Train model by alternating stochastic gradient ascent/descent

Illustration on a 2D toy data set (5 points on a circle)

Illustration on a 2D toy data set (5 points on a circle)

Learning equivariant latent representations

MNIST, k = 2

varying z_1 (rotation)

varying z_2 (stroke width)

Learning equivariant latent representations

smallNORB, k = 3

varying z_1 (lighting)

varying z_2 (elevation)

varying z_3 (azimuth)

Learning equivariant latent representations

varying z_1 (rotation)

varying z_2 (stroke width)

smallNORB, *k* = 3

varying z_1 (lighting)

varying z_2 (elevation)

varying z_3 (azimuth)

tinyvideos, k = 1

varying z₁ (time)

See you at our poster, Pacific Ballroom #16, 6:30 tonight!

Flat Metric Minimization with Applications in Generative Modeling Technical University of Munich Thomas Möllenhoff Daniel Cremers REPRESENTING DATA WITH NORMAL CURRENTS FLATGAN: LEARNING EQUIVARIANT REPRESENTATIONS Contribution: We propose to view (partially) oriented data as a k-current $\{\mathbf{F}_1(g_{ot}S,T) = \sup$ $(\omega(x_i), T_i)$ $g_{\Omega} : Z \rightarrow X$ $\|\omega\| \le \lambda$ + $\mathbb{E}_{\tau \sim u} [(\omega \circ q_{\theta_1} (\nabla_{\tau} q_{\theta_1} \cdot e_1) \land ... \land (\nabla_{\tau} q_{\theta_1} \cdot e_k))]$ $S = a \wedge (a \wedge \dots \wedge a)$ $T = \frac{1}{2} \nabla_{i=1}^{N} \delta_{i} \wedge T$ Solving the above optimization problem yields a generator go which behaves equivariantly to the specified tangent vectors. Illustration on a simple dataset in 2D Intuitively, k-currents form a linear space that includes k-dimensional oriented manitolds as elements. The vector space of **normal currents** N₁ $v(\mathbf{R}^d)$ consists of currents T with finite volume and finite volume of their boundary: $M(T) + M(\partial T) < \infty$ THE FLAT METRIC $T \in \mathbb{N}_{2,2}(\mathbb{R}^d)$ it 500 it 1000 it 2000 $T \in \mathbb{N}_{1,\lambda}(\mathbb{R}^d)$ it 1000 it 2000 $\mathbb{F}_1(S,T) = \min \mathbb{M}(B) + \lambda \mathbb{M}(A) = \sup S(\omega) - T(\omega)$ $\|\omega\| \le \lambda$ tinyvideos, k = 1 MNIST, k = 21 smallNORB, *k* = 3* Modes1 600000000000 For 0-currente: It is related to the Masseretein-1 distance varving lighting (z.) $\partial B = \delta_X - \delta_Y$ varying z₁ (rotation $(\delta_{-}) \equiv \min(\lambda ||x - v||$ ancing elevation (+.) The intuition for 1-currents: 666666666 varying z, (time) varving z₂ (stroke width varving azimuth (z.) $\mathbf{A} = \mathbf{S} - \mathbf{T}$ GEOMETRIC MEASURE THEORY CHEAT SHEET & REFERENCES handless and i measures A m² is a uncertainty of the same of the descent describe original A models THEORETICAL REGULTS planes in R⁴. These are called simple k-vectors: r. A ... A r. The dual space (k-covectors) is A⁴R⁴. Har and a new simula then up here (a.) and a state in the def (UTW) Federer & Fleming 1960. The flat metric metrizes the weak' convergence on normal A differential form is a k-covertor field $\omega : \mathbb{R}^d \to A^2\mathbb{R}^d$. Learning are the dual space of smooth, connect k-downard currents with uniformly bounded mass and boundary mass Init = sup, ..., (v, v). Area of the k-dim, parallelotope spanned by the (v,) if v = v, A... A v. The mass M(T) - sun. T/s/ is the 3-dimensional volume of the 3-current T. $\mathbb{F}_1(T, T_i) \rightarrow 0$ if and only if $T_i \xrightarrow{*} T$, i.e., $T_i(w) \rightarrow T(w)$, for all $w \in C_c^{\infty}(\mathbb{R}^d; \Lambda^k \mathbb{R}^d)$. **Recordery:** $\partial T(\omega) = T(d\omega)$, where d is the exterior derivative (in Ξ^3) and ω curl ω div). **Orientation:** Continuous hometry man $x \to M \to A \mathbb{R}^d$ $x \to 0$ is simply with unit many spacetime T M for all $x \to M$ Proposition. Let $S \in N_{k,Z}(\mathbb{R}^l)$, $T \in N_{k,Z}(\mathbb{R}^d)$ be normal currents. Assume $g_{\Omega} : \mathbb{Z} \rightarrow \mathbb{R}$ Stokes' theorem: $[_{i,i}(d\omega, \tau_M) d\mathcal{H}^i = [_{i,i,i}(\omega, \tau_{MM}) d\mathcal{H}^{i-1}, \text{ it follows that } \partial [[M]] = [[\partial M]].$ X is smooth in z with uniformly bounded derivative and locally Lipschitz in θ. Then, Pullback: $(r^{f}\omega, r, A, ..., Ar_{i}) = (\omega \circ r, \forall r \cdot r, A, ..., A \forall r \cdot r_{i})$, pushforward: $r_{i}T(\omega) = T(r^{f}\omega)$. the map $\theta \mapsto \mathbb{P}_2(q_{0,0}S, T)$ is Lipschitz continuous on any compact parameter set Θ . [1] H. Federer and W. H Fleming, Normal and integral currents, Annals of Mathematics, pages 458-520, 1980. 21 H. Ferlerer, Connetric Measure Theory, Seringer, 1989. Presented at the International Conference on Machine Learning (ICML), Los Angeles, 2019. 11 F. Meenan, Connectio Measure Theory: A Reninner's Oxide, Anademic Press, 5th addison, 2016.

PyTorch implementation: https://github.com/moellenh/flatgan