Flat Metric Minimization with Applications in Generative Modeling

Thomas Möllenhoff Daniel Cremers

Technical
 University
 of Munich
 $\pi \pi$

Motivation

Latent concepts often induce an orientation of the data.

Motivation

Latent concepts often induce an orientation of the data. Tangent vectors to the "data manifold":

- Stroke thickness or shear of MNIST digit.

Motivation

Latent concepts often induce an orientation of the data. Tangent vectors to the "data manifold":

- Stroke thickness or shear of MNIST digit.
- Camera position, lighting/material in a 3D scene.

Motivation

Latent concepts often induce an orientation of the data. Tangent vectors to the "data manifold":

- Stroke thickness or shear of MNIST digit.
- Camera position, lighting/material in a 3D scene.
- Arrow of time (videos, time-series data, ...)

Motivation

Latent concepts often induce an orientation of the data.
Tangent vectors to the "data manifold":

- Stroke thickness or shear of MNIST digit.
- Camera position, lighting/material in a 3D scene.
- Arrow of time (videos, time-series data, ...)

Contributions:

- We propose the novel perspective to represent oriented data with k-currents from geometric measure theory.

Motivation

Latent concepts often induce an orientation of the data.
Tangent vectors to the "data manifold":

- Stroke thickness or shear of MNIST digit.
- Camera position, lighting/material in a 3D scene.
- Arrow of time (videos, time-series data, ...)

Contributions:

- We propose the novel perspective to represent oriented data with k-currents from geometric measure theory.
- Using this viewpoint within the context of GANs, we learn a generative model which behaves equivariantly to specified tangent vectors.

An invitation to geometric measure theory (GMT)

An invitation to geometric measure theory (GMT)

- Differential geometry, generalized through measure theory to deal with surfaces that are not necessarily smooth.

An invitation to geometric measure theory (GMT)

- Differential geometry, generalized through measure theory to deal with surfaces that are not necessarily smooth.
- k-currents \approx generalized (possibly quite irregular) oriented k-dimensional surfaces in d-dimensional space.

An invitation to geometric measure theory (GMT)

- Differential geometry, generalized through measure theory to deal with surfaces that are not necessarily smooth.
- k-currents \approx generalized (possibly quite irregular) oriented k-dimensional surfaces in d-dimensional space.
- The class of currents we consider form a linear space. It includes oriented k-dimensional surfaces as elements.

Generalizing Wasserstein GANs to k-currents

- T and S are 1-currents representing the data and the (partially oriented) latents.

Generalizing Wasserstein GANs to k-currents

- T and S are 1-currents representing the data and the (partially oriented) latents.
- Pushforward operator $g_{\theta \sharp}$, yields transformed current $g_{\theta \sharp} S$.

Generalizing Wasserstein GANs to k-currents

- T and S are 1-currents representing the data and the (partially oriented) latents.
- Pushforward operator $g_{\theta \sharp}$, yields transformed current $g_{\theta \sharp} S$.
- We propose to use the flat metric \mathbb{F}_{λ} as a distance between $g_{\sharp} S$ and T.

Generalizing Wasserstein GANs to k-currents

- T and S are 1-currents representing the data and the (partially oriented) latents.
- Pushforward operator $g_{\theta \sharp}$, yields transformed current $g_{\theta \sharp} S$.
- We propose to use the flat metric \mathbb{F}_{λ} as a distance between $g_{\sharp} S$ and T.
- For $k=0$ the flat metric is closely related to the Wasserstein-1 distance and positive o-currents with unit mass are probability distributions.

k-dimensional orientation in d-dimensional space

- Simple k-vectors $v=v_{1} \wedge \cdots \wedge v_{k} \in \Lambda_{k} \mathbf{R}^{d}$ describe oriented k-dimensional subspaces together with an area in \mathbf{R}^{d} :

k-dimensional orientation in d-dimensional space

- Simple k-vectors $v=v_{1} \wedge \cdots \wedge v_{k} \in \Lambda_{k} \mathbf{R}^{d}$ describe oriented k-dimensional subspaces together with an area in \mathbf{R}^{d} :

- The set of simple k-vectors forms a nonconvex cone in the vector space $\Lambda_{k} \mathbf{R}^{d}$.

k-dimensional orientation in d-dimensional space

- Simple k-vectors $v=v_{1} \wedge \cdots \wedge v_{k} \in \Lambda_{k} \mathbf{R}^{d}$ describe oriented k-dimensional subspaces together with an area in \mathbf{R}^{d} :

- The set of simple k-vectors forms a nonconvex cone in the vector space $\Lambda_{k} \mathbf{R}^{d}$.
- For $v=v_{1} \wedge \cdots \wedge v_{k}, w=w_{1} \wedge \cdots \wedge w_{k}$:

$$
\langle v, w\rangle=\operatorname{det}\left(V^{\top} W\right),|v|=\sqrt{\langle v, v\rangle} .
$$

Oriented manifolds, differential forms and currents

- Orientation of a k-dimensional manifold \mathcal{M} : continuous simple k-vector map $\tau_{\mathcal{M}}: \mathcal{M} \rightarrow \Lambda_{k} \mathbf{R}^{d},\left|\tau_{\mathcal{M}}(z)\right|=1$ and $T_{z} \mathcal{M}$ "spanned" by $\tau_{\mathcal{M}}(z)$

Oriented manifolds, differential forms and currents

- Orientation of a k-dimensional manifold \mathcal{M} : continuous simple k-vector map $\tau_{\mathcal{M}}: \mathcal{M} \rightarrow \Lambda_{k} \mathbf{R}^{d},\left|\tau_{\mathcal{M}}(z)\right|=1$ and $T_{z} \mathcal{M}$ "spanned" by $\tau_{\mathcal{M}}(z)$
- Differential form: k-covector field $\omega: \mathbf{R}^{d} \rightarrow \Lambda^{k} \mathbf{R}^{d}$

Oriented manifolds, differential forms and currents

- Orientation of a k-dimensional manifold \mathcal{M} : continuous simple k-vector map $\tau_{\mathcal{M}}: \mathcal{M} \rightarrow \Lambda_{k} \mathbf{R}^{d},\left|\tau_{\mathcal{M}}(z)\right|=1$ and $T_{z} \mathcal{M}$ "spanned" by $\tau_{\mathcal{M}}(z)$
- Differential form: k-covector field $\omega: \mathbf{R}^{d} \rightarrow \Lambda^{k} \mathbf{R}^{d}$
- Integration of a k-form over an oriented k-dimensional manifold:

$$
\int_{\mathcal{M}} \omega:=\int_{\mathcal{M}}\left\langle\omega(z), \tau_{\mathcal{M}}(z)\right\rangle d \mathcal{H}^{k}(z)=\llbracket \mathcal{M} \rrbracket(\omega)
$$

Oriented manifolds, differential forms and currents

- Orientation of a k-dimensional manifold \mathcal{M} : continuous simple k-vector map $\tau_{\mathcal{M}}: \mathcal{M} \rightarrow \Lambda_{k} \mathbf{R}^{d},\left|\tau_{\mathcal{M}}(z)\right|=1$ and $T_{z} \mathcal{M}$ "spanned" by $\tau_{\mathcal{M}}(z)$
- Differential form: k-covector field $\omega: \mathbf{R}^{d} \rightarrow \Lambda^{k} \mathbf{R}^{d}$
- Integration of a k-form over an oriented k-dimensional manifold:

$$
\int_{\mathcal{M}} \omega:=\int_{\mathcal{M}}\left\langle\omega(z), \tau_{\mathcal{M}}(z)\right\rangle d \mathcal{H}^{k}(z)=\llbracket \mathcal{M} \rrbracket(\omega)
$$

- $\llbracket \mathcal{M} \rrbracket$ is a k-current. In general, they are continuous linear functionals acting on compactly supported smooth k-forms

Oriented manifolds, differential forms and currents

- Orientation of a k-dimensional manifold \mathcal{M} : continuous simple k-vector map $\tau_{\mathcal{M}}: \mathcal{M} \rightarrow \Lambda_{k} \mathbf{R}^{d},\left|\tau_{\mathcal{M}}(z)\right|=1$ and $T_{z} \mathcal{M}$ "spanned" by $\tau_{\mathcal{M}}(z)$
- Differential form: k-covector field $\omega: \mathbf{R}^{d} \rightarrow \Lambda^{k} \mathbf{R}^{d}$
- Integration of a k-form over an oriented k-dimensional manifold:

$$
\int_{\mathcal{M}} \omega:=\int_{\mathcal{M}}\left\langle\omega(z), \tau_{\mathcal{M}}(z)\right\rangle d \mathcal{H}^{k}(z)=\llbracket \mathcal{M} \rrbracket(\omega)
$$

- $\llbracket \mathcal{M} \rrbracket$ is a k-current. In general, they are continuous linear functionals acting on compactly supported smooth k-forms

2-current

discrete 2-current
discrete o-current

Towards a distance between k-currents

- Mass of a k-current: $\mathbb{M}(T)=\sup _{\|\omega\|^{*} \leq 1} T(\omega)$

Towards a distance between k-currents

- Mass of a k-current: $\mathbb{M}(T)=\sup _{\|\omega\|^{*} \leq 1} T(\omega)$
- The boundary operator ∂ maps a k-current to a $(k-1)$-current: $\partial T(\omega)=T(d \omega)$

Towards a distance between k-currents

- Mass of a k-current: $\mathbb{M}(T)=\sup _{\|\omega\|^{*} \leq 1} T(\omega)$
- The boundary operator ∂ maps a k-current to a $(k-1)$-current: $\partial T(\omega)=T(d \omega)$
- Stokes' theorem:

$$
\int_{\partial \mathcal{M}} \omega=\int_{\mathcal{M}} d \omega
$$

Towards a distance between k-currents

- Mass of a k-current: $\mathbb{M}(T)=\sup _{\|\omega\|^{*} \leq 1} T(\omega)$
- The boundary operator ∂ maps a k-current to a $(k-1)$-current: $\partial T(\omega)=T(d \omega)$
- Stokes' theorem:

$$
\int_{\partial \mathcal{M}} \omega=\int_{\mathcal{M}} d \omega .
$$

- Normal currents $T \in N_{k, \mathcal{X}}\left(\mathbf{R}^{d}\right)$: Finite mass and boundary mass $\mathbb{M}(T)+\mathbb{M}(\partial T)<\infty$

Towards a distance between k-currents

- Mass of a k-current: $\mathbb{M}(T)=\sup _{\|\omega\|^{*} \leq 1} T(\omega)$
- The boundary operator ∂ maps a k-current to a $(k-1)$-current: $\partial T(\omega)=T(d \omega)$
- Stokes' theorem:

$$
\int_{\partial \mathcal{M}} \omega=\int_{\mathcal{M}} d \omega .
$$

- Normal currents $T \in N_{k, \mathcal{X}}\left(\mathbf{R}^{d}\right)$: Finite mass and boundary mass $\mathbb{M}(T)+\mathbb{M}(\partial T)<\infty$
- A geometric view on the Wasserstein-1 distance:

$$
\mathcal{W}_{1}(S, T)=\min _{\partial B=S-T} \mathbb{M}(B) \text {. Example: } S=\delta_{x}, T=\delta_{y}:
$$

The flat metric

Given two normal k-currents $S \in N_{k, \mathcal{X}}\left(\mathbf{R}^{d}\right), T \in N_{k, \mathcal{X}}\left(\mathbf{R}^{d}\right)$ the flat metric as defined as

$$
\mathbb{F}_{\lambda}(S, T)=\min _{S-T=\partial B+A} \mathbb{M}(B)+\lambda \mathbb{M}(A)=\sup _{\substack{\|\omega\|^{*} \leq \lambda \\\|d \omega\|^{*} \leq 1}}(S-T)(\omega)
$$

$$
A=S-T
$$

$$
-\partial B
$$

The flat metric

Given two normal k-currents $S \in N_{k, \mathcal{X}}\left(\mathbf{R}^{d}\right), T \in N_{k, \mathcal{X}}\left(\mathbf{R}^{d}\right)$ the flat metric as defined as

$$
\mathbb{F}_{\lambda}(S, T)=\min _{S-T=\partial B+A} \mathbb{M}(B)+\lambda \mathbb{M}(A)=\sup _{\substack{\|\omega\|^{*} \leq \lambda \\\|d \omega\|^{*} \leq 1}}(S-T)(\omega)
$$

$$
A=S-T
$$

$$
-\partial B
$$

Federer \& Fleming 1960: The flat metric metrizes the weak* convergence on normal currents with uniformly bounded mass and boundary mass.

Flat metric minimization: our theoretical result

Flat metric minimization: our theoretical result

Assumptions:

- Normal currents $S \in N_{k, \mathcal{Z}}\left(\mathbf{R}^{\prime}\right), T \in N_{k, \mathcal{X}}\left(\mathbf{R}^{d}\right)$.
- $g: \mathcal{Z} \times \Theta \rightarrow \mathcal{X}$ smooth in z with uniformly bounded derivative, loc. Lipschitz in θ.
- Parameter space Θ is compact.

Flat metric minimization: our theoretical result

Assumptions:

- Normal currents $S \in N_{k, \mathcal{Z}}\left(\mathbf{R}^{\prime}\right), T \in N_{k, \mathcal{X}}\left(\mathbf{R}^{d}\right)$.
- $g: \mathcal{Z} \times \Theta \rightarrow \mathcal{X}$ smooth in z with uniformly bounded derivative, loc. Lipschitz in θ.
- Parameter space Θ is compact.

Proposition. The map $\theta \mapsto \mathbb{F}_{\lambda}\left(g_{\theta \sharp} S, T\right)$ is Lipschitz continuous.

FlatGAN formulation and implementation

$\min _{\theta \in \Theta} \mathbb{F}_{\lambda}\left(g_{\theta \sharp} S, T\right)$

FlatGAN formulation and implementation

$$
\min _{\theta \in \Theta} \sup _{\substack{\|\omega\|^{*} \leq \lambda \\\|d \omega\|^{*} \leq 1}}\left(g_{\theta \sharp} S-T\right)(\omega)
$$

FlatGAN formulation and implementation

$$
\min _{\theta \in \Theta} \sup _{\substack{\|\omega\|^{*} \leq \lambda \\\|d \omega\|^{*} \leq 1}} g_{\theta \sharp} S(\omega)-T(\omega)
$$

FlatGAN formulation and implementation

$$
\min _{\theta \in \Theta} \sup _{\substack{\|\omega\|^{*} \leq \lambda \\\|d \omega\|^{*} \leq 1}} S\left(g_{\theta}{ }^{\sharp} \omega\right)-T(\omega)
$$

FlatGAN formulation and implementation

FlatGAN formulation and implementation

$$
\min _{\theta \in \Theta} \sup _{\substack{\|\omega\|^{*} \leq \lambda \\\|d \omega\|^{*} \leq 1}} \mathbb{E}_{z \sim \mu}\left[\left\langle\omega \circ g_{\theta},\left(\nabla_{z} g_{\theta} \cdot e_{1}\right) \wedge \cdots \wedge\left(\nabla_{z} g_{\theta} \cdot e_{k}\right)\right\rangle\right]-\frac{1}{N} \sum_{i=1}^{N}\left\langle\omega\left(x_{i}\right), T_{i, 1} \wedge \cdots \wedge T_{i, k}\right\rangle
$$

FlatGAN formulation and implementation

$$
\min _{\theta \in \Theta} \sup _{\substack{\|\omega\|^{*} \leq \lambda \\\|d \omega\|^{*} \leq 1}} \mathbb{E}_{z \sim \mu}\left[\left\langle\omega \circ g_{\theta},\left(\nabla_{z} g_{\theta} \cdot e_{1}\right) \wedge \cdots \wedge\left(\nabla_{z} g_{\theta} \cdot e_{k}\right)\right\rangle\right]-\frac{1}{N} \sum_{i=1}^{N}\left\langle\omega\left(x_{i}\right), T_{i, 1} \wedge \cdots \wedge T_{i, k}\right\rangle
$$

- Implement $\omega: \mathbf{R}^{d} \rightarrow \Lambda^{k} \mathbf{R}^{d}$ and $g_{\theta}: \mathcal{Z} \rightarrow \mathcal{X}$ with deep nets

FlatGAN formulation and implementation

$$
\min _{\theta \in \Theta} \sup _{\substack{\|\omega\|^{*} \leq \lambda \\\|d \omega\|^{*} \leq 1}} \mathbb{E}_{z \sim \mu}\left[\left\langle\omega \circ g_{\theta},\left(\nabla_{z} g_{\theta} \cdot e_{1}\right) \wedge \cdots \wedge\left(\nabla_{z} g_{\theta} \cdot e_{k}\right)\right\rangle\right]-\frac{1}{N} \sum_{i=1}^{N}\left\langle\omega\left(x_{i}\right), T_{i, 1} \wedge \cdots \wedge T_{i, k}\right\rangle
$$

- Implement $\omega: \mathbf{R}^{d} \rightarrow \Lambda^{k} \mathbf{R}^{d}$ and $g_{\theta}: \mathcal{Z} \rightarrow \mathcal{X}$ with deep nets
- Soft penalty for $\|\omega(x)\|^{*} \leq \lambda,\|d \omega(x)\|^{*} \leq 1$ (similar to WGAN-GP)

FlatGAN formulation and implementation

$$
\min _{\theta \in \Theta} \sup _{\substack{\|\omega\|^{*} \leq \lambda \\\|d \omega\|^{\leq} \leq 1}} \mathbb{E}_{z \sim \mu}\left[\left\langle\omega \circ g_{\theta},\left(\nabla_{z} g_{\theta} \cdot e_{1}\right) \wedge \cdots \wedge\left(\nabla_{z} g_{\theta} \cdot e_{k}\right)\right\rangle\right]-\frac{1}{N} \sum_{i=1}^{N}\left\langle\omega\left(x_{i}\right), T_{i, 1} \wedge \cdots \wedge T_{i, k}\right\rangle
$$

- Implement $\omega: \mathbf{R}^{d} \rightarrow \Lambda^{k} \mathbf{R}^{d}$ and $g_{\theta}: \mathcal{Z} \rightarrow \mathcal{X}$ with deep nets
- Soft penalty for $\|\omega(x)\|^{*} \leq \lambda,\|d \omega(x)\|^{*} \leq 1$ (similar to WGAN-GP)
- Compute $\nabla_{z} g_{\theta} \cdot e_{i}$ with two calls to autograd (rop), $\langle\cdot, \cdot\rangle$ by $k \times k$-determinant

FlatGAN formulation and implementation

$$
\min _{\theta \in \Theta} \sup _{\substack{\|\omega\|^{*} \leq \lambda \\\|d \omega\|^{*} \leq 1}} \mathbb{E}_{z \sim \mu}\left[\left\langle\omega \circ g_{\theta},\left(\nabla_{z} g_{\theta} \cdot e_{1}\right) \wedge \cdots \wedge\left(\nabla_{z} g_{\theta} \cdot e_{k}\right)\right\rangle\right]-\frac{1}{N} \sum_{i=1}^{N}\left\langle\omega\left(x_{i}\right), T_{i, 1} \wedge \cdots \wedge T_{i, k}\right\rangle
$$

- Implement $\omega: \mathbf{R}^{d} \rightarrow \Lambda^{k} \mathbf{R}^{d}$ and $g_{\theta}: \mathcal{Z} \rightarrow \mathcal{X}$ with deep nets
- Soft penalty for $\|\omega(x)\|^{*} \leq \lambda,\|d \omega(x)\|^{*} \leq 1$ (similar to WGAN-GP)
- Compute $\nabla_{z} g_{\theta} \cdot e_{i}$ with two calls to autograd (rop), $\langle\cdot, \cdot\rangle$ by $k \times k$-determinant
- Train model by alternating stochastic gradient ascent/descent

Illustration on a 2D toy data set (5 points on a circle)

Illustration on a 2D toy data set (5 points on a circle)

Learning equivariant latent representations

MNIST, $k=2$

Learning equivariant latent representations

MNIST, $k=2$

smallNORB, $k=3$

varying z_{1} (lighting)

varying z_{2} (elevation)

Learning equivariant latent representations

MNIST, $k=2$

333333333	333333333
999999999	999999999
5555555555	5555555555
666666656	666666666
666666666	666666666

smallNORB, $k=3$

varying z_{1} (lighting)

varying z_{2} (elevation)
 varying z_{3} (azimuth)
tinyvideos, $k=1$

varying z_{1} (time)

See you at our poster, Pacific Ballroom \#16, 6:30 tonight!

TII
Flat Metric Minimization with Applications in Generative Modeling Thomas Möllenhoff Daniel Cremers Technical University of Munich

Representing Data with Normal Currents

Contribution: We propose to view (partially) oriented data as a k-current.

Intuitively, k-currents form a linear space that includes k-dimensional oriented manifolds as elements. The vector space of normal currents $\mathrm{N}_{k, \chi}\left(\mathbf{R}^{d}\right)$ consists of currents T with finite volume and finite volume of their boundary: $\mathrm{M}(T)+\mathbb{M}(\partial T)<\infty$.

THE FLAT METRIC
$\mathbb{F}_{\lambda}(S, T)=\min _{S-T=\partial B+A} \mathbb{M}(B)+\lambda M(A)=\sup _{\substack{\\|\omega\\| \\ \\|\omega S\\ \\| d \omega \\| \leq 1}} S(\omega)-T(\omega)$

For 0-currents: It is related to the Wasserstein-1 distance.

The intuition for 1-currents:

Theoretical Results
Federer \& Fleming 1960. The flat metric metrizes the weak' convergence on normal currents with uniformly bounded mass and boundary mass:
$\mathbb{F}_{\lambda}\left(T, T_{i}\right) \rightarrow 0$ if and only if $T_{i} \dot{\Delta}$, i.e., $T_{i}(w) \rightarrow T(w)$, for all $\omega \in C_{c}^{\infty}\left(\mathbf{R}^{d} ; \boldsymbol{\Lambda}^{k} \mathbf{R}^{d}\right)$.
Proposition. Let $S \in \mathbf{N}_{k, Z},\left(\mathbf{R}^{l}\right), T \in \mathbf{N}_{k, \chi}\left(\mathbf{R}^{d}\right)$ be normal currents. Assume $g \theta: Z \rightarrow$ \mathcal{X} is smooth in z with uniformly bounded derivative and locally Lipschitz in θ. The the map $\theta \mapsto \mathbf{F}_{\lambda}\left(g_{\theta A} S, T\right)$ is Lipschitz continuous on any compact parameter set Θ.

FlatGan: Learning Equivariant Representations

$$
\begin{aligned}
& \min _{\theta \in \Theta}\left\langle\mathbb{F}_{\mathcal{A}}\left(g_{\theta \xi} S, T\right)=\sup _{\substack{\|\omega\\
\| d \omega \\
\| d \omega \mid \leq 1}}-\frac{1}{N} \sum_{i=1}^{N}\left\langle\omega\left(x_{i}\right), T_{i}\right\rangle\right. \\
& \left.+\mathbb{E}_{z-\mu}\left[\left(\omega \circ g_{\theta},\left(\nabla_{z} g \theta \cdot e_{1}\right) \wedge \ldots \wedge\left(\nabla_{z g \theta} \cdot e_{k}\right)\right)\right]\right\} .
\end{aligned}
$$

Solving the above optimization problem yields a generator $g \theta$ which behaves equiv-
ariantly to the specified tangent vectors. ariantly to the specified tangent vectors.

$$
\text { Illustration on a simple dataset in } 2 \mathrm{D}
$$

Geometric Measure Theory Cheat Sheet \& References

