Multivariate-Information Adversarial Ensemble for Scalable Joint Distribution Matching

Ziliang Chen*, Zhanfu Yang*, Xiaoxi Wang*, Xiaodan Liang, Xiaopeng Yan, Guanbin Li, Liang Lin

Sun Yat-sen University, Purdue University

Implicit Generative Models (IGM), e.g., GAN [1] and CycleGAN [2], boil down to an *m*-domain joint distribution matching (JDM):

$$p(\boldsymbol{x}_1, \cdots, \boldsymbol{x}_m) := p(\{\boldsymbol{x}_j\}_{j \in [m] \& j \neq i} | \boldsymbol{x}_i) p(\boldsymbol{x}_i)$$
$$= p_{\Theta}(\{\boldsymbol{x}_j\}_{j \in [m] \& j \neq i} | \boldsymbol{x}_i) p(\boldsymbol{x}_i)$$

[1] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, Generative Adversarial Nets. Proceedings Neural Information Processing Systems Conference, 2014

[2] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. ArXiv, 2017

Implicit Generative Models (IGM), e.g., GAN [1] and CycleGAN [2], boil down to an *m*-domain joint distribution matching (JDM):

$$p(\boldsymbol{x}_1, \cdots, \boldsymbol{x}_m) := p(\{\boldsymbol{x}_j\}_{j \in [m] \& j \neq i} | \boldsymbol{x}_i) p(\boldsymbol{x}_i)$$
$$= p_{\Theta}(\{\boldsymbol{x}_j\}_{j \in [m] \& j \neq i} | \boldsymbol{x}_i) p(\boldsymbol{x}_i)$$

However, if m > 2,

[1] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, Generative Adversarial Nets. Proceedings Neural Information Processing Systems Conference, 2014

[2] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. ArXiv, 2017

Implicit Generative Models (IGM), e.g., GAN [1] and CycleGAN [2], boil down to an *m*-domain joint distribution matching (JDM):

$$p(\boldsymbol{x}_1, \cdots, \boldsymbol{x}_m) := p(\{\boldsymbol{x}_j\}_{j \in [m] \& j \neq i} | \boldsymbol{x}_i) p(\boldsymbol{x}_i)$$
$$= p_{\Theta}(\{\boldsymbol{x}_j\}_{j \in [m] \& j \neq i} | \boldsymbol{x}_i) p(\boldsymbol{x}_i)$$

However, if m > 2,

Solution 1: CycleGAN, JointGAN[3]

They suffer combinatorial explosion in their parameters

Solution 2: StarGAN [4] and its variants

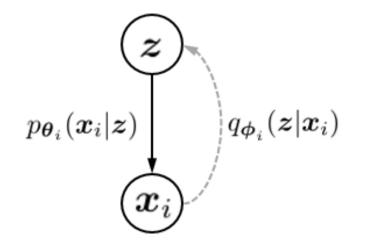
The domain-shared model lacks theoretical support, fragile in model collapse

[1] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, Generative Adversarial Nets. Proceedings Neural Information Processing Systems Conference, 2014

[2] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. ArXiv, 2017

[3] Pu Y, Dai S, Gan Z, et al. JointGAN: Multi-Domain Joint Distribution Learning with Generative Adversarial Nets ICML. 2018.

[4] Choi Y, Choi M, Kim M, et al. StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation. CVPR 2018.

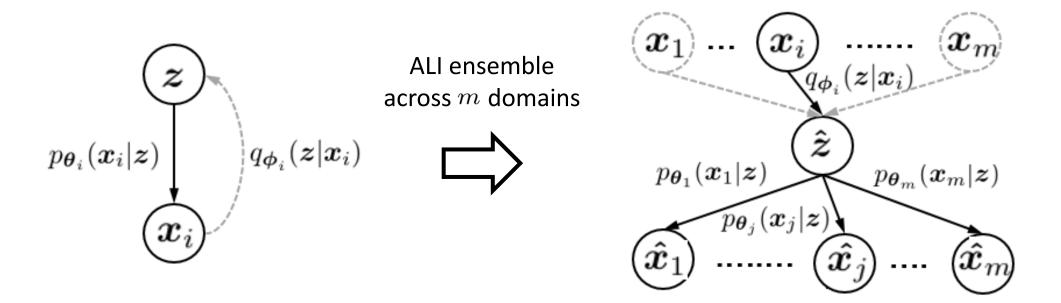


Adversarially Learned Inference (ALI) Model [5]

$$\min_{\boldsymbol{\theta}_{i},\boldsymbol{\phi}_{i}} \max_{\boldsymbol{\omega}_{i}} \mathcal{L}_{\text{ALI}}^{(i)}(\boldsymbol{\theta}_{i},\boldsymbol{\phi}_{i},\boldsymbol{\omega}_{i}) = \\ \mathbb{E}_{\boldsymbol{x}_{i} \sim p(\boldsymbol{x}_{i}), \hat{\boldsymbol{z}} \sim q_{\boldsymbol{\phi}_{i}}(\hat{\boldsymbol{z}}|\boldsymbol{x}_{i})} \left[\log f_{\boldsymbol{\omega}_{i}}(\boldsymbol{x}_{i}, \hat{\boldsymbol{z}}) \right] \\ + \mathbb{E}_{\hat{\boldsymbol{x}}_{i} \sim p_{\boldsymbol{\theta}_{i}}(\hat{\boldsymbol{x}}_{i}|\boldsymbol{z}), \boldsymbol{z} \sim q(\boldsymbol{z})} \left[\log \left(1 - f_{\boldsymbol{\omega}_{i}}(\hat{\boldsymbol{x}}_{i}, \boldsymbol{z}) \right) \right]$$

Lemma 1 ((Dumoulin et al., 2016)). The optimal generation, inference and critic nets w.r.t., $\{\boldsymbol{\theta}_i^*, \boldsymbol{\phi}_i^*, \boldsymbol{\omega}_i^*\}$ ($\forall i \in [m]$) refer to a saddle point in Eq.2 $\iff p_{\boldsymbol{\theta}_i^*}(\boldsymbol{x}_i|\boldsymbol{z})q(\boldsymbol{z}) = q_{\boldsymbol{\phi}_i^*}(\boldsymbol{z}|\boldsymbol{x}_i)p_i(\boldsymbol{x}_i)$.

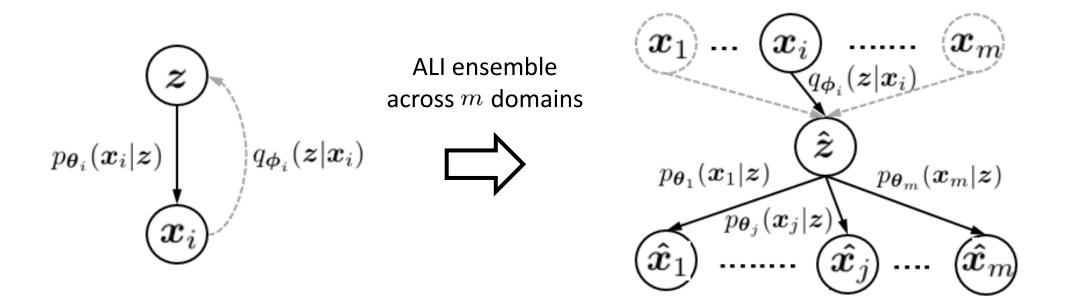
[5] Dumoulin, V., Belghazi, I., Poole, B., Mastropietro, O., Lamb, A., Arjovsky, M., and Courville, A. Adversarially learned inference. arXiv preprint arXiv:1606.00704, 2016.



Advantages: (1). Linear-parameter scalability as m increases.

(2). Generative model capability: **Proposition 1.** Given a pair of domains $\forall i, j \in [m], i \neq j$, their well-trained ALIs (in Lemma. 1) construct a crossdomain transfer process $p_{\Phi,\Theta}(\hat{x}_j | x_i)$ that satisfies

$$p_{\Phi^*,\Theta^*}(\hat{\boldsymbol{x}}_j) = \int p_{\Phi^*,\Theta^*}(\hat{\boldsymbol{x}}_j | \boldsymbol{x}_i) p_i(\boldsymbol{x}_i) d\boldsymbol{x}_i = p_j(\hat{\boldsymbol{x}}_j)$$



Advantages: (1). Linear-parameter scalability as m increases.

(2). Generative model capability: **Proposition 1.** Given a pair of domains $\forall i, j \in [m], i \neq j$, their well-trained ALIs (in Lemma. 1) construct a crossdomain transfer process $p_{\Phi,\Theta}(\hat{x}_j|x_i)$ that satisfies $p_{\Phi^*,\Theta^*}(\hat{x}_j) = \int p_{\Phi^*,\Theta^*}(\hat{x}_j|x_i)p_i(x_i)dx_i = p_j(\hat{x}_j)$ In supervised learning, data are drawn from $p(x_1, \dots, x_m)$, each of them presenting as m-tuple. So the criterion can be written as

$$\min_{\boldsymbol{\Phi},\boldsymbol{\Theta}} - \mathbb{E}_p \left[\log p_{\boldsymbol{\Phi},\boldsymbol{\Theta}}(\{\boldsymbol{x}_i\}_{i=1}^m) \right]$$

In unsupervised learning, no access is provided to draw *m*-tuple from $p(x_1, \dots, x_m)$. Extending the observation from [6], the criterion is to minimize the conditional entropy

$$\min_{\boldsymbol{\Phi},\boldsymbol{\Theta}} H(\boldsymbol{x}_i|\{\hat{\boldsymbol{x}}_j\}_{j\in[m]\& j\neq i})$$
$$= -\mathbb{E}_{p_{\boldsymbol{\Phi},\boldsymbol{\Theta}}}\left[\log p_{\boldsymbol{\Phi},\boldsymbol{\Theta}}(\boldsymbol{x}_i|\{\hat{\boldsymbol{x}}_j\}_{j\in[m]\& j\neq i})\right]$$

[6] Li, C., Liu, H., Chen, C., Pu, Y., Chen, L., Henao, R., and Carin, L. Alice: Towards understanding adversarial learning for joint distribution matching. In Advances in Neural Information Processing Systems, pp. 5501–5509, 2017.

Mutual Information: $I(\boldsymbol{x}; \boldsymbol{y}) = I(\boldsymbol{y}; \boldsymbol{x}) := H(\boldsymbol{y}) - H(\boldsymbol{y}|\boldsymbol{x})$

Multivariate Mutual Information:

$$I(\boldsymbol{y}_1; \cdots; \boldsymbol{y}_n)$$

:= $I(\boldsymbol{y}_1; \cdots; \boldsymbol{y}_{n-1}) - I(\boldsymbol{y}_1; \cdots; \boldsymbol{y}_{n-1} | \boldsymbol{y}_n)$

Our method aims to achieve:

Observation 1. Given empirical draws from p_i ($\forall i \in [m]$), in supervised learning,

$$-I_{\Phi,\Theta}(\boldsymbol{x}_{i};\boldsymbol{x}_{j};\hat{\boldsymbol{z}}) \leq H_{\Phi,\Theta}(\boldsymbol{x}_{i}|\boldsymbol{x}_{j})$$

$$\leq_{\boldsymbol{x}_{i},\boldsymbol{x}_{j}\sim p_{i,j}} \mathbb{E}\left[\log \int p_{\boldsymbol{\theta}_{i}}(\boldsymbol{x}_{i}|\hat{\boldsymbol{z}})q_{\boldsymbol{\phi}_{j}}(\hat{\boldsymbol{z}}|\boldsymbol{x}_{j})d\hat{\boldsymbol{z}}\right] \triangleq \mathcal{L}_{\Phi,\Theta}^{\mathrm{con}}(\boldsymbol{x}_{i},\boldsymbol{x}_{j})$$
(10)
where $p_{i,j} = p(\boldsymbol{x}_{i},\boldsymbol{x}_{j})$.

Observation 2. Given empirical draws from p_i ($\forall i \in [m]$), *in unsupervised learning,*

$$-I_{\Phi,\Theta}(\boldsymbol{x}_{i}; \hat{\boldsymbol{x}}_{j}; \hat{\boldsymbol{z}}) \leq H_{\Phi,\Theta}(\boldsymbol{x}_{i} | \hat{\boldsymbol{x}}_{j})$$

$$\leq \mathbb{E}_{\boldsymbol{x}_{i}, \hat{\boldsymbol{x}}_{j} \sim p_{\boldsymbol{\theta}_{j}, \boldsymbol{\phi}_{i}}} - \left[\log \int p_{\boldsymbol{\theta}_{i}}(\boldsymbol{x}_{i} | \hat{\boldsymbol{z}}) q_{\boldsymbol{\phi}_{j}}(\hat{\boldsymbol{z}} | \boldsymbol{x}_{j}) d\hat{\boldsymbol{z}}\right] \triangleq \mathcal{L}_{\Phi,\Theta}^{\text{cycle}}(\boldsymbol{x}_{i}, \hat{\boldsymbol{x}}_{j})$$

$$(11)$$
where $p_{\boldsymbol{\theta}_{j}, \boldsymbol{\phi}_{i}} = p(\boldsymbol{x}_{i}) \int_{\hat{\boldsymbol{z}}} p_{\boldsymbol{\theta}_{j}}(\hat{\boldsymbol{x}}_{j} | \hat{\boldsymbol{z}}) q_{\boldsymbol{\phi}_{i}}(\hat{\boldsymbol{z}} | \boldsymbol{x}_{i}) d\hat{\boldsymbol{z}}.$

$$(12)$$

 $\mathcal{L}_{\Phi,\Theta}^{\text{cycle}}(x_i, \hat{x}_j)$ is constructed as illustrated in Fig.2.b.

Observation 3. Given empirical draws from $q(\boldsymbol{z})$, $-I_{\Phi,\Theta}(\hat{\boldsymbol{x}}_i; \hat{\boldsymbol{x}}_j; \boldsymbol{z}) \leq H_{\Phi,\Theta}(\boldsymbol{z}|\hat{\boldsymbol{x}}_i) + H_{\Phi,\Theta}(\hat{\boldsymbol{x}}_j|\hat{\boldsymbol{x}}_i)$ (12)

$$H_{\Phi,\Theta}(\boldsymbol{z}|\boldsymbol{\hat{x}}_{i}) = \underset{\boldsymbol{\hat{x}}_{i} \sim p_{\boldsymbol{\theta}_{i}}, \boldsymbol{z} \sim q(\boldsymbol{z})}{\mathbb{E}} - \log q_{\boldsymbol{\phi}_{i}}(\boldsymbol{z}|\boldsymbol{\hat{x}}_{i}) \triangleq \mathcal{L}_{\Phi,\Theta}^{\text{cycle}}(\boldsymbol{z}, \boldsymbol{\hat{x}}_{i})$$
$$H_{\Phi,\Theta}(\boldsymbol{\hat{x}}_{j}|\boldsymbol{\hat{x}}_{i}) = \underset{\boldsymbol{z} \sim q(\boldsymbol{z})}{\mathbb{E}} - \left[\log \int_{\boldsymbol{z}} p_{\boldsymbol{\theta}_{j}}(\boldsymbol{\hat{x}}_{j}|\boldsymbol{z}) q_{\boldsymbol{\phi}_{i}}(\boldsymbol{z}|\boldsymbol{\hat{x}}_{i}) d\boldsymbol{z}\right]$$
$$\triangleq \mathcal{L}_{\Phi,\Theta}^{\text{cycle}}(\boldsymbol{z}, \boldsymbol{\hat{x}}_{i}, \boldsymbol{\hat{x}}_{j})$$

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} x_{i} \xrightarrow{q_{\phi_{i}}} \hat{z} \xrightarrow{p_{\theta_{j}}} \hat{x}_{j} \\ x_{j} \end{array} & \begin{array}{c} x_{i} \xrightarrow{q_{\phi_{i}}} \hat{z} \xrightarrow{p_{\theta_{j}}} \hat{x}_{j} \\ \hat{x}_{i} \xrightarrow{p_{\theta_{i}}} \hat{z} \xrightarrow{q_{\phi_{j}}} \hat{x}_{j} \end{array} & \begin{array}{c} z \xrightarrow{p_{\theta_{i}}} \hat{x}_{i} \\ \hat{x}_{j} \xrightarrow{q_{\phi_{j}}} \hat{z} \xrightarrow{p_{\theta_{i}}} \hat{x}_{i} \\ \hat{x}_{j} \xrightarrow{q_{\phi_{j}}} \hat{z} \xrightarrow{p_{\theta_{i}}} \hat{x}_{i} \end{array} \\ \hline \\ \begin{array}{c} z \\ \hat{x}_{j} \end{array} & \begin{array}{c} z \\ \hat{x}_{j} \xrightarrow{q_{\phi_{j}}} \hat{z} \xrightarrow{p_{\theta_{i}}} \hat{x}_{i} \\ \hat{x}_{j} \xrightarrow{q_{\phi_{j}}} \hat{z} \xrightarrow{p_{\theta_{i}}} \hat{x}_{i} \end{array} \\ \hline \\ \begin{array}{c} z \\ \hat{x}_{j} \xrightarrow{q_{\phi_{j}}} \hat{z} \xrightarrow{p_{\theta_{i}}} \hat{x}_{i} \\ \hat{x}_{j} \xrightarrow{q_{\phi_{j}}} \hat{x}_{i} \end{array} \\ \hline \\ \begin{array}{c} z \\ \hat{x}_{j} \xrightarrow{q_{\phi_{j}}} \hat{z} \xrightarrow{p_{\theta_{i}}} \hat{x}_{i} \\ \hat{x}_{j} \xrightarrow{q_{\phi_{j}}} \hat{x}_{i} \\ \hat{x}_{i} \xrightarrow{q_{\phi_{j}}} \hat{x}_{i} \end{array} \\ \hline \\ \begin{array}{c} z \\ \hat{x}_{i} \xrightarrow{q_{\phi_{j}}} \hat{x}_{i} \\ \hat{x}_{j} \xrightarrow{q_{\phi_{j}}} \hat{x}_{i} \\ \hat{x}_{i} \xrightarrow{q_{\phi_{j}}} \hat{x}_{i} \end{array} \\ \hline \\ \begin{array}{c} z \\ \hat{x}_{i} \xrightarrow{q_{\phi_{j}}} \hat{x}_{i} \\ \hat{x}_{i} \xrightarrow{q_{\phi_{j}}} \hat{x}_{i} \\ \hat{x}_{i} \xrightarrow{q_{\phi_{j}}} \hat{x}_{i} \end{array} \\ \hline \\ \begin{array}{c} z \\ \hat{x}_{i} \xrightarrow{q_{\phi_{j}}} \hat{x}_{i} \\ \hat{x}_{i} \xrightarrow{q_{\phi_{j}}} \hat{x}_{i} \\ \hat{x}_{i} \xrightarrow{q_{\phi_{j}}} \hat{x}_{i} \end{array} \\ \hline \\ \begin{array}{c} z \\ \hat{x}_{i} \xrightarrow{q_{\phi_{j}}} \hat{x}_{i} \\ \hat{x}_{i} \xrightarrow{q_{\phi_{j}}} \hat{x}_{i} \\ \hat{x}_{i} \xrightarrow{q_{\phi_{j}}} \hat{x}_{i} \end{array} \\ \hline \\ \begin{array}{c} z \\ \hat{x}_{i} \xrightarrow{q_{\phi_{j}}} \hat{x}_{i} \\ \hat{x}_{i} \xrightarrow{q_{\phi_{j}}} \hat{x}_{i} \\ \hat{x}_{i} \xrightarrow{q_{\phi_{j}}} \hat{x}_{i} \end{array} \\ \hline \\ \begin{array}{c} z \\ \hat{x}_{i} \xrightarrow{q_{\phi_{i}}} \hat{x}_{i} \\ \hat{x}_{i} \xrightarrow{q_{\phi_{i}}} \hat{x}_{i} \\ \hat{x}_{i} \xrightarrow{q_{\phi_{i}}} \hat{x}_{i} \\ \hat{x}_{i} \xrightarrow{q_{\phi_{i}}} \hat{x}_{i} \end{array} \\ \hline \\ \begin{array}{c} z \\ \hat{x}_{i} \xrightarrow{q_{\phi_{i}}} \hat{x}_{i} \\ \hat{x$$

$$egin{aligned} \mathcal{R}_{ ext{SL}}(oldsymbol{\Theta},oldsymbol{\Phi}) &= \sum_{i,j\in[m],i
eq j} \mathcal{L}_{oldsymbol{\Phi},oldsymbol{\Theta}}^{ ext{con}}(oldsymbol{x}_i,oldsymbol{x}_j) + \mathcal{L}_{oldsymbol{\Phi},oldsymbol{\Theta}}^{ ext{cycle}}(oldsymbol{z},oldsymbol{\hat{x}}_i) \ &+ \mathcal{L}_{oldsymbol{\Phi},oldsymbol{\Theta}}^{ ext{cycle}}(oldsymbol{z},oldsymbol{\hat{x}}_i,oldsymbol{\hat{x}}_j) \ &+ \mathcal{L}_{oldsymbol{\Phi},oldsymbol{\Theta}}^{ ext{cycle}}(oldsymbol{z},oldsymbol{\hat{x}}_i) \ &+ \mathcal{L}_{oldsymbol{\Theta},oldsymbol{\Theta}}^{ ext{cycle}}(oldsymbol{x},oldsymbol{\hat{x}}_i) \ &+ \mathcal{L}_{oldsymbol{\Theta},oldsymbol{\Theta}}^{ ext{cycle}}(oldsymbol{x},oldsymbol{\hat{x}}_i) \ &+ \mathcal{L}_{oldsymbol{\Theta},oldsymbol{\Theta}}^{ ext{cycle}}(oldsymbol{z},oldsymbol{\hat{x}}_i) \ &+ \mathcal{L}_{oldsymbol{\Theta},oldsymbol{\Theta},oldsymbol{\Theta}}^{ ext{cycle}}(oldsymbol{x},oldsymbol{\hat{x}}_i) \ &+ \mathcal{L}_{oldsymbol{\Theta},oldsymbol{\Theta}}^{ ext{cycle}}(oldsymbol{z},oldsymbol{\hat{x}}_i) \ &+ \mathcal{L}_{oldsymbol{\Theta},oldsymbol{\Theta}}^{ ext{cycle}}(oldsymbol{z},oldsymbol{\hat{x}}_i) \ &+ \mathcal{L}_{olds$$

Theorem 1. Suppose that true and parameterized domain marginal distributions maintain a high likelihood to domain variables, $\mathcal{R}_{SL} \to 0$ leads to the optima in $\min_{\Phi,\Theta} - \mathbb{E}_p \left[\log p_{\Phi,\Theta}(\{x_i\}_{i=1}^m) \right]$ $\mathcal{R}_{UL} \to 0$ leads to the optima in $\min_{\Phi,\Theta} H(x_i | \{\hat{x}_j\}_{j \in [m] \& j \neq i})$

$$\min_{\boldsymbol{\Theta}, \boldsymbol{\Phi}} \max_{\boldsymbol{\Omega}} (1 - \gamma) \sum_{i=1}^{m} \mathcal{L}_{ALI}^{(i)} + \gamma \sum_{i=1}^{m} \mathcal{L}_{DMAE}^{(i)} + \beta \mathcal{R}_{SL} / \mathcal{R}_{UL}$$
s.t. $\mathcal{L}_{DMAE}^{(i)}(\boldsymbol{\Phi}, \boldsymbol{\Theta}, \boldsymbol{\Omega}) = \mathbb{E}_{\boldsymbol{x}_i, \hat{\boldsymbol{z}} \sim q_{\boldsymbol{\Phi}_i}(\boldsymbol{x}_i, \hat{\boldsymbol{z}})} \left[\log f_{\boldsymbol{\omega}_i}(\boldsymbol{x}_i, \hat{\boldsymbol{z}}) \right]$

$$+ \sum_{j=1}^{m} \pi_j \left(\mathbb{E}_{\hat{\boldsymbol{x}}_i \sim p_{\boldsymbol{\Theta}_i}(\hat{\boldsymbol{x}}_i | \boldsymbol{z}), \boldsymbol{z} \sim q_{\boldsymbol{\Phi}_j}} \left[\log \left(1 - f_{\boldsymbol{\omega}_i}(\hat{\boldsymbol{x}}_i, \boldsymbol{z}) \right) \right] \right)$$

where $\mathcal{R}_{SL}/\mathcal{R}_{UL}$ are switched by supervised/unsupervised learning and $\beta > 0$ denotes the loss-balance factor.

Proposition 2. The optimum of the generation, inference and critic networks in $\min_{\Theta, \Phi} \max_{\Omega} (1 - \gamma) \sum_{i=1}^{m} \mathcal{L}_{ALI}^{(i)} + \gamma \sum_{i=1}^{m} \mathcal{L}_{MALI}^{(i)}$

refer to their saddle points in Lemma.1 if and only if $\forall i \in [m]$, there exist $p_{\theta_i^*}(\boldsymbol{x}|\boldsymbol{z})q(\boldsymbol{z}) = q_{\phi_i^*}(\boldsymbol{z}|\boldsymbol{x})p(\boldsymbol{x})$.

Experiments

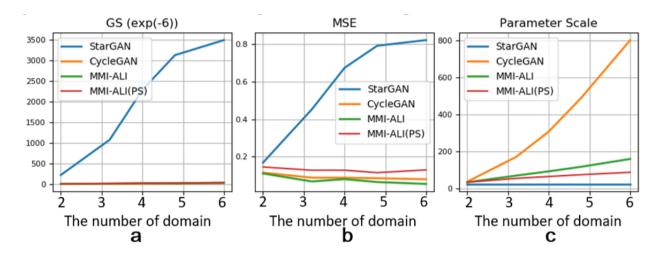
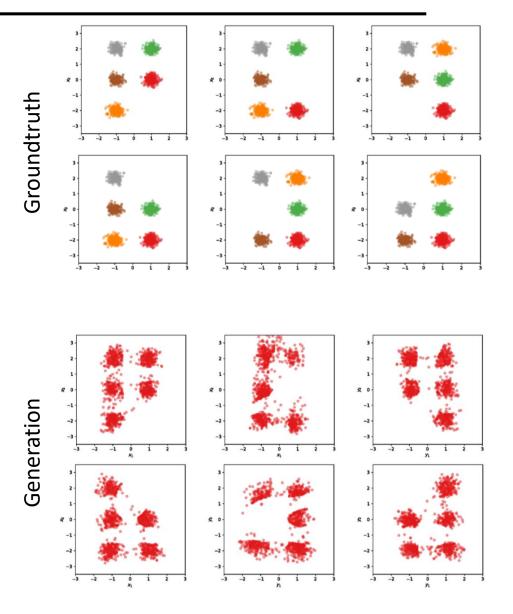
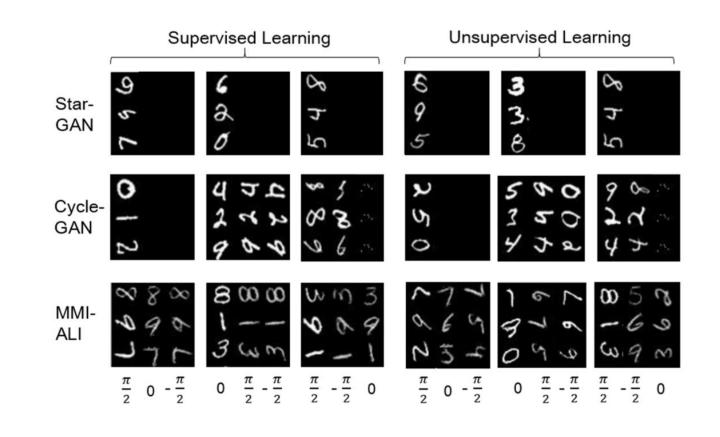


Figure 4. Transfer evaluations with $2\sim6$ synthetic domains: (a). Geometric Score (GS, lower is better); (b). Mean Square Error (MSE, lower is better); (c). Parameter Scale (lower is better).

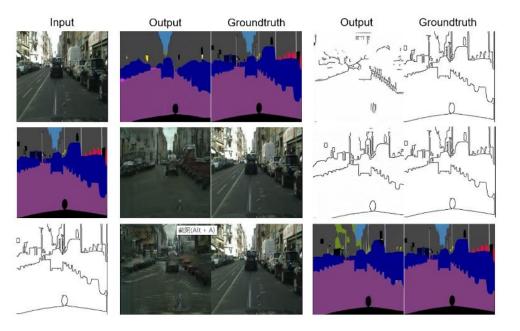


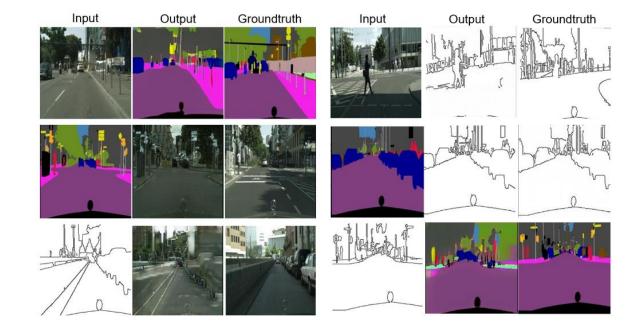
Experiments



	$-\frac{\pi}{2} \rightarrow 0$	$\frac{\pi}{2} \rightarrow 0$	$0 \rightarrow \frac{\pi}{2}$	$-\frac{\pi}{2} \rightarrow \frac{\pi}{2}$	$-\frac{\pi}{2} \rightarrow 0$	$\frac{\pi}{2} \rightarrow -\frac{\pi}{2}$
StarGAN	1.00 ± 0.00	1.00 ± 0.00	1.00 ± 0.00	1.00 ± 0.00	1.00 ± 0.00	$1.\bar{0}0\pm0.00$
CycleGAN	$8.34 {\pm} 0.12$	6.13 ± 0.37	$2.25 {\pm} 0.02$	$2.38 {\pm} 0.06$	1.71 ± 0.03	$1.04 {\pm} 0.01$
MMI-ALI (wo MMI)	$7.48 {\pm} 0.05$	$6.06 {\pm} 0.10$	$3.19 {\pm} 0.04$	$2.90 {\pm} 0.05$	$2.73 {\pm} 0.09$	2.47 ± 0.12
MMI-ALI ($\gamma = 0$)	$8.34 {\pm} 0.20$	$8.27 {\pm} 0.10$	3.26 ±0.06	$3.06 {\pm} 0.10$	3.15 ± 0.11	$2.92{\pm}0.12$
MMI-ALI	8.99 ±0.06	9.01 ±0.00	$2.95{\pm}0.08$	3.86 ±0.12	3.31 ±0.12	3.08 ±0.05

Experiments





Supervised Learning

Unsupervised Learning

		R→Seg	Seg→R	R→Ske	Ske→R	Seg→Ske	Ske→Seg
Unsuper	ST	405.16	372.59	385.08	388.97	357.19	417.39
	CG	224.04	213.43	164.65	222.24	60.20	144.07
	Ours	202.93	254.41	150.98	246.04	101.30	192.13
Super	ST	382.90	440.53	419.11	383.72	400.70	299.82
	CG	217.28	260.41	171.04	223.43	65.18	228.61
	Ours	250.48	246.01	196.06	229.45	55.76	143.20

Collaborators

Thank You!