Bellman GAN:

Distributional Multivariate Policy Evaluation and Exploration

Dror Freirich, Tzahi Shimkin, Ron Meir, Aviv Tamar

Viterbi Faculty of Electrical Engineering Technion

ICML 2019

Outline

- Multivariate rewards
- Exploration

Distributional RL

Objective

Learning value distribution, rather than expectation

$$Z^{\pi}(s,a) \stackrel{D}{=} \sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \quad ; \quad s_{0} = s, a_{0} = a$$

Z obeys distributional Bellman equation – Fixed Point!

$$Z^{\pi}(s,a) \stackrel{D}{=} T^{\pi} Z^{\pi}(s,a)$$

Distributional Bellman operator

$$T^{\pi}Z^{\pi}(s,a) \triangleq R(s,a) + \gamma Z^{\pi}(s',a')$$

3

Bellemare et al, ICML 2017

Bellman GAN

Bellman GAN

Mapping Distributional Bellman Eqn. to WGAN

High Dimensional Distributions

• GANs learn distributions of high-dim data

Brock et al, 2018

Main insight Framework applicable to vector rewards $r(s, a) \in \mathbb{R}^d$

Scalable DiRL algorithm for Multi-Objective RL

Multi-Reward Policy Evaluation

- Tabular state-space, 4 actions, Random policy.
- 8 reward types, 2 in each room.
- Trained BellGAN, sampled Generator at different locations.

Multi-Reward Policy Evaluation

- Tabular state-space, 4 actions, Random policy.
- 8 reward types, 2 in each room.
- Trained BellGAN, sampled Generator at different locations.

Model Learning

Multivariate Bellman equation

$$Z^{\pi}(s,a) \stackrel{D}{=} T^{\pi} Z^{\pi}(s,a) \triangleq \tilde{r}(s,a,s') + \tilde{\Gamma} Z^{\pi}(s',a')$$

Special case: Model Learning

$$\tilde{r}(s,a,s') = \begin{pmatrix} r(s,a,s') \\ s' \end{pmatrix} \quad \tilde{\Gamma} = \begin{pmatrix} \gamma I & 0 \\ 0 & 0 \end{pmatrix}$$

- AdvantagesFramework for learning both value and transitionmodel , and the dependencies between them.
- ApplicationExploration change in Wasserstein distance as
reward bonus for curiosity.

Continuous Control Experiments

LQR(noisy - cost)

Epilogue

- Equivalence Distributional Bellman Eqn and GANs
- GAN-based algorithm for DiRL
 - high-dimensional, multivariate rewards
 - Unify learning of return and next state distributions
- Novel exploration method based on DiRL
- Paves the way for a distributional approach to:
 - Multi-objective RL
 - Policy optimization

References

- Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural information processing systems, pp. 2672–2680, 2014.

- Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement learning. arXiv preprint arXiv:1707.06887, 2017.

- Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv preprint arXiv:1701.07875, 2017.

- Jürgen Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation (1990–2010). IEEE Transactions on Autonomous Mental Development, 2(3):230–247, 2010.

References

- Pierre-Yves Oudeyer, Frdric Kaplan, and Verena V Hafner. Intrinsic motivation systems for autonomous mental development. IEEE transactions on evolutionary computation, 11(2):265–286, 2007.

- Cederic Villani, Optimal transport old and new, 2008

- Brock et al, Large scale GAN training for high fidelity natural image synthesis, September 2018

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel.
 Vime: Variational information maximizing exploration. In Advances in Neural
 Information Processing Systems, pp. 1109–1117, 2016.

Freirich, Shimkin, Meir, T., Distributional multivariate policy evaluation and exploration with the Bellman GAN, ICML 2019

DiRL Driven Exploration

Bellman GAN objective

$$\mathcal{L}_{\pi}(G,D) \triangleq E_{z \sim p_z, a_{t+1} \sim \pi(\cdot|s_{t+1})} \Lambda(G_{\theta}, D_{\omega})$$

Intrinsic reward function

$$r^{i}(s_{t}, a_{t}, r_{t}, s_{t+1}) \triangleq \|E_{z \sim P_{z}, a_{t+1} \sim \pi(\cdot | s_{t+1})} \nabla_{\theta} \Lambda(G_{\theta}, D_{\omega})\|$$
Approx. contribution to learning

Combined reward function

$$\hat{r}(s_t, a_t, s_{t+1}) = r(s_t, a_t, s_{t+1}) + \eta r^i(s_t, a_t, r_t, s_{t+1})$$
Exploitation Exploration
Exploration