Extrapolating Beyond Suboptimal Demonstrations via Inverse Reinforcement Learning from Observations

Daniel Brown*, Wonjoon Goo*, Prabhat Nagarajan, and Scott Niekum

Personal Autonomous Robotics Lab

Current approaches ...

1. Can't do better than the demonstrator.

2. Are hard to scale to complex problems.

Current approaches ...

1. Can't do better than the demonstrator.

2. Are hard to scale to complex problems.

IRL via Ranked Demonstrations

Current approaches ...

IRL via Ranked Demonstrations

 Can't do better than the demonstrator.

We find a reward function that explains the ranking, allowing for extrapolation.

2. Are hard to scale to complex problems.

Current approaches ...

IRL via Ranked Demonstrations

 Can't do better than the demonstrator.

We find a reward function that explains the ranking, allowing for extrapolation.

2. Are hard to scale to complex problems.

Inverse Reinforcement Learning becomes standard binary classification.

Given ranked demonstrations

$$\tau_1 \prec \tau_2 \prec \cdots \prec \tau_T$$

How do we train the reward function $\hat{r}_{ heta}(s)$?

 $\tau_1 \prec \tau_2 \prec \cdots \prec \tau_T$

 $\tau_1 \prec \tau_2 \prec \cdots \prec \tau_T$

 $\tau_1 \prec \tau_2 \prec \cdots \prec \tau_T$

 $\sum_{s \in \tau_i} \hat{r}_{\theta}(s) < \sum_{s \in \tau_i} \hat{r}_{\theta}(s)$

 $\tau_1 \prec \tau_2 \prec \cdots \prec \tau_T$ $\sum_{s \in \tau_i} \hat{r}_{\theta}(s) < \sum_{s \in \tau_i} \hat{r}_{\theta}(s)$ $\mathcal{L}(\theta) \approx -\sum_{\tau_i \prec \tau_j} \log \frac{\exp \sum_{s \in \tau_j} \hat{r}_{\theta}(s)}{\exp \sum_{s \in \tau_i} \hat{r}_{\theta}(s) + \exp \sum_{s \in \tau_j} \hat{r}_{\theta}(s)}$

 $\tau_1 \prec \tau_2 \prec \cdots \prec \tau_T$ $\sum_{s \in \tau_i} \hat{r}_{\theta}(s) < \sum_{s \in \tau_i} \hat{r}_{\theta}(s)$ $\mathcal{L}(\theta) \approx -\sum_{\tau_i \prec \tau_j} \log \frac{\exp \sum_{s \in \tau_j} \hat{r}_{\theta}(s)}{\exp \sum_{s \in \tau_i} \hat{r}_{\theta}(s) + \exp \sum_{s \in \tau_j} \hat{r}_{\theta}(s)}$

 $\tau_1 \prec \tau_2 \prec \cdots \prec \tau_T$

 $\mathcal{L}(\theta) \approx -\sum_{\tau_i \prec \tau_j} \log \frac{\exp \sum_{s \in \tau_j} \hat{r}_{\theta}(s)}{\exp \sum_{s \in \tau_i} \hat{r}_{\theta}(s) + \exp \sum_{s \in \tau_j} \hat{r}_{\theta}(s)}$

 $\tau_1 \prec \tau_2 \prec \cdots \prec \tau_T$ $\sum_{s \in \tau_i} \hat{r}_{\theta}(s) < \sum_{s \in \tau_i} \hat{r}_{\theta}(s)$ $\mathcal{L}(\theta) \approx -\sum_{\tau_i \prec \tau_j} \log \frac{\exp \sum_{s \in \tau_j} \hat{r}_{\theta}(s)}{\exp \sum_{s \in \tau_i} \hat{r}_{\theta}(s) + \exp \sum_{s \in \tau_j} \hat{r}_{\theta}(s)}$

 $\tau_1 \prec \tau_2 \prec \cdots \prec \tau_T$ $\sum_{s \in \tau_i} \hat{r}_{\theta}(s) < \sum_{s \in \tau_i} \hat{r}_{\theta}(s)$ $\mathcal{L}(\theta) \approx -\sum_{\tau_i \prec \tau_j} \log \frac{\exp \sum_{s \in \tau_j} \hat{r}_{\theta}(s)}{\exp \sum_{s \in \tau_i} \hat{r}_{\theta}(s) + \exp \sum_{s \in \tau_j} \hat{r}_{\theta}(s)}$

 $\tau_1 \prec \tau_2 \prec \cdots \prec \tau_T$ $\sum_{s \in \tau_i} \hat{r}_{\theta}(s) < \sum_{s \in \tau_j} \hat{r}_{\theta}(s)$ $\mathcal{L}(\theta) \approx -\sum_{\tau_i \prec \tau_j} \log \frac{\exp \sum_{s \in \tau_j} \hat{r}_{\theta}(s)}{\exp \sum_{s \in \tau_i} \hat{r}_{\theta}(s) + \exp \sum_{s \in \tau_j} \hat{r}_{\theta}(s)}$

We subsample trajectories to create a large dataset of weakly labeled pairs!

- Simple:
 - IRL as binary classification.
 - No human supervision during policy learning.
 - No inner-loop MDP solver.
 - No inference time data collection (e.g. GAIL).
 - No action labels required.

- Simple:
 - IRL as binary classification.
 - No human supervision during policy learning.
 - No inner-loop MDP solver.
 - No inference time data collection (e.g. GAIL).
 - No action labels required.
- Scales to high-dimensional tasks (e.g. Atari games)

- Simple:
 - IRL as binary classification.
 - No human supervision during policy learning.
 - No inner-loop MDP solver.
 - No inference time data collection (e.g. GAIL).
 - No action labels required.
- Scales to high-dimensional tasks (e.g. Atari games)
- Can produce policies much better than demonstrator

T-REX Policy Performance

T-REX on HalfCheetah

Reward Extrapolation

T-REX can extrapolate beyond the performance of the best demo

Results: Atari Games

T-REX outperforms best demonstration on 7 out of 8 games!

	Ranked Demonstrations		LfD Algorithm Performance		
Game	Best	Average	T-REX	BCO	GAIL
Beam Rider	1,332	686.0	3,335.7	568	355.5
Breakout	32	14.5	221.3	13	0.28
Enduro	84	39.8	586.8	8	0.28
Hero	13,235	6,742.0	0	2,167	0
Pong	-6	-15.6	-2.0	-21	-21
Q*bert	800	627	32,345.8	150	0
Seaquest	600	373.3	747.3	0	0
Space Invaders	600	332.9	1,032.5	88	370.2

T-REX on Enduro

Come see our poster @ Pacific Ballroom #47

Robust to noisy ranking labels

Automatic ranking by watching a learner improve at a task

Human demos / ranking labels

Reward function visualization

Come see our poster @ Pacific Ballroom #47

F-RFX

Robust to noisy ranking labels

Automatic ranking by watching a learner improve at a task

Human demos / ranking labels

Reward function visualization

