
A Deep Reinforcement Learning
Perspective on Internet Congestion
Control
by Nathan Jay*, Noga H. Rotman*, Brighten
Godfrey, Michael Schapira, and Aviv Tamar

*Equal contribution

Internet Congestion Control

End Host

The Internet
(maybe?)

Server

Internet Congestion Control

End Host
Data

The Internet
(maybe?)

t=1

Server

Internet Congestion Control

End Host

The Internet
(maybe?)

Server

Internet Congestion Control

End Host

The Internet
(maybe?)

Server

Data

t=5.1

Internet Congestion Control

End Host

The Internet
(maybe?)

Server

t=5.2

Ack

Internet Congestion Control

End Host

The Internet
(maybe?)

Server

Internet Congestion Control

End Host

The Internet
(maybe?)

t=10.2

Ack

Server

Internet Congestion Control

End Host
Data

The Internet
(maybe?)

t=10.2

Ack

t=1

Server

Data

t=5.1

t=5.2

Ack

Internet Congestion Control

Latency Trace of Internet Path*

L
a

te
n

c
y

Time

L
a

te
n

c
y

*from pantheon.stanford.edu

Internet Congestion Control

Latency Trace of Internet Path*

L
a

te
n

c
y

Time

L
a

te
n

c
y

*from pantheon.stanford.edu

Internet Congestion Control

Latency Trace of Internet Path*

L
a

te
n

c
y

Time

L
a

te
n

c
y

*from pantheon.stanford.edu

Internet Congestion Control

Latency Trace of Internet Path*

L
a

te
n

c
y

Time

L
a

te
n

c
y

*from pantheon.stanford.edu

Underlying Complexity:

● Enormous, dynamic network

● Massive agent churn

● Very little information

~80,000 agents/second

Revisiting Congestion Control

Congestion Control Timeline

1988 2016 2019Flavors of TCP Congestion Control
(Tahoe, Reno, Cubic, Illinois, Vegas, …)

● Same network model
● Same action space
● Slightly different control algorithms

Revisiting Congestion Control

Congestion Control Timeline

1988 2016 2019Flavors of TCP Congestion Control
(Tahoe, Reno, Cubic, Illinois, Vegas, …)

● Same network model
● Same action space
● Slightly different control algorithms

Introduction of QUIC, replaces
significant amount of Google traffic.

● New models
● New action space (packet pacing added to Linux)
● Novel control algorithms and research (BBR, Copa, PCC)

Reward-based architecture: PCC

Observations

Test
Rates

Network

Performance
Statistics

Monitor Interval

Input Features:

1. Send Ratio

2. Lat. Ratio

3. Lat.

Inflation

Reward-based architecture: PCC

ActionsObservations

Test
Rates

Network

Performance
Statistics

Monitor Interval

Input Features:

1. Send Ratio

2. Lat. Ratio

3. Lat.

Inflation

Agent Architecture

Monitor Interval

Send Rate

Utility

Throughput

Latency

Latency Inflation

Loss Rate

Monitor Interval

Send Rate

Utility

Throughput

Latency

Latency Inflation

Loss Rate

Monitor Interval

Send Rate

Utility

Throughput

Latency

Latency Inflation

Loss Rate

Monitor Interval

Input Features:

1. Send Ratio

2. Lat. Ratio

3. Lat.

Inflation

History Length

Rate Change

Factor

𝛼 New Rate =
𝛼 > 0: Old Rate x (1 + w𝛼)

𝛼 < 0: Old Rate / (1 - w𝛼)
3-Layer NN

Agent Architecture

Monitor Interval

Send Rate

Utility

Throughput

Latency

Latency Inflation

Loss Rate

Monitor Interval

Send Rate

Utility

Throughput

Latency

Latency Inflation

Loss Rate

Monitor Interval

Send Rate

Utility

Throughput

Latency

Latency Inflation

Loss Rate

Monitor Interval

Input Features:

1. Send Ratio

2. Lat. Ratio

3. Lat.

Inflation

History Length

Rate Change

Factor

𝛼 New Rate =
𝛼 > 0: Old Rate x (1 + w𝛼)

𝛼 < 0: Old Rate / (1 - w𝛼)
3-Layer NN

Key Design Choice: Scale-free
observations affect robustness

Training/Testing Environment

Training Environment:

● Simulated network
● Each episode chooses link

parameters from a range:

● Standard gym at
github.com/PCCProject/PCC-RL

Capacity Latency Loss Queue

1 - 6mbps 50 -

500ms

0 - 5% 1 - ~3000pkt

Training/Testing Environment

Training Environment:

● Simulated network
● Each episode chooses link

parameters from a range:

● Standard gym at
github.com/PCCProject/PCC-RL

Capacity Latency Loss Queue

1 - 6mbps 50 -

500ms

0 - 5% 1 - ~3000pkt

Testing Environment:

● Real packets in Linux kernel
network emulation

● Much wider testing range:

Capacity Latency Loss Queue

1 - 128mbps 1 -

512ms

0 - 20% 1 - 10000pkt

State-of-the-art Results

Test Description:

● Emulated network, with real
Linux kernel noise

● Time-varying link

Emulated Dynamic Link Performance

State-of-the-art Results

Test Description:

● Emulated network, with real
Linux kernel noise

● Time-varying link

Emulated Dynamic Link Performance

State-of-the-art Results

Test Description:

● Emulated network, with real
Linux kernel noise

● Time-varying link

Emulated Dynamic Link Performance

State-of-the-art Results

Test Description:

● Emulated network, with real
Linux kernel noise

● Time-varying link

Emulated Dynamic Link Performance

State-of-the-art Results

Test Description:

● Emulated network, with real
Linux kernel noise

● Time-varying link

Emulated Dynamic Link Performance

Aurora is on the Pareto front of
state-of-the-art algorithms

Exciting Directions

● Multi-agent scenarios:
○ Cooperative
○ Selfish

● Online training:
○ Few-shot training
○ Meta-learning

● Multi-objective Learning:
○ File transfer
○ Live video

By The Opte Project - Originally from the English Wikipedia; description page is/was here., CC BY 2.5,

https://commons.wikimedia.org/w/index.php?curid=1538544

See us at:

Poster #45
6:30pm - 9:00pm
Pacific Ballroom

Code available at
github.com/PCCProject/PCC-RL

