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Underlying Complexity:

● Enormous, dynamic network

● Massive agent churn

● Very little information

~80,000 agents/second
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● Same network model
● Same action space
● Slightly different control algorithms

Introduction of QUIC, replaces 
significant amount of Google traffic.

● New models
● New action space (packet pacing added to Linux)
● Novel control algorithms and research (BBR, Copa, PCC)
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Key Design Choice: Scale-free 
observations affect robustness
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Training Environment:

● Simulated network
● Each episode chooses link 

parameters from a range:

● Standard gym at  
github.com/PCCProject/PCC-RL

Capacity Latency Loss Queue

1 - 6mbps 50 -

500ms

0 - 5% 1 - ~3000pkt

Testing Environment:

● Real packets in Linux kernel 
network emulation

● Much wider testing range:

Capacity Latency Loss Queue

1 - 128mbps 1 -

512ms

0 - 20% 1 - 10000pkt
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Test Description:
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● Time-varying link
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State-of-the-art Results

Test Description:

● Emulated network, with real 
Linux kernel noise

● Time-varying link

Emulated Dynamic Link Performance

Aurora is on the Pareto front of 
state-of-the-art algorithms



Exciting Directions

● Multi-agent scenarios:
○ Cooperative
○ Selfish

● Online training:
○ Few-shot training
○ Meta-learning

● Multi-objective Learning:
○ File transfer
○ Live video

By The Opte Project - Originally from the English Wikipedia; description page is/was here., CC BY 2.5, 
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See us at:

Poster #45
6:30pm - 9:00pm
Pacific Ballroom

Code available at 
github.com/PCCProject/PCC-RL


