Trajectory-Based Off-Policy Deep Reinforcement Learning

Andreas Doerr^{1,2,3} Michael Volpp¹ Marc Toussaint³ Sebastian Trimpe² Christian Daniel¹

^[1] Bosch Center for Artificial Intelligence, Renningen, Germany
^[2] Max Planck Institute for Intelligent Systems, Stuttgart/Tübingen, Germany
^[3] Machine Learning & Robotics Lab, University of Stuttgart, Germany

BOSCH

Trajectory-Based Off-Policy Deep Reinforcement Learning Fast & Efficient Model-Free Reinforcement Learning

How far can we push <u>"model-free</u>" RL? $\nabla_{\theta} J = \frac{1}{N} \sum_{i=1}^{N} \left[\sum_{t=0}^{H} \nabla_{\theta} \log \pi \left(a_{t}^{(i)} \middle| s_{t}^{(i)}; \theta \right) R(\tau_{i}) \right]^{[1]}$

[1] Williams, R. J. Simple statistical gradient-following algorithms for connectionist reinforcement learning. 1992

Bosch Center for Artificial Intelligence | 2019-06-12

Trajectory-Based Off-Policy Deep Reinforcement Learning Problems with Policy Gradient Methods

Problems

Data inefficiency

- On-policy samples required
- No sample reuse

Gradient variance

- Stochastic policy
- Stochastic environment

Exploration vs. exploitation

- Step size control
- Policy (relative) entropy

[1] Williams, R. J. Simple statistical gradient-following algorithms for connectionist reinforcement learning. 1992

Core concepts in DD-OPG

Core concepts in DD-OPG

Global Return Distribution Estimator

- Incorporation of all data (off-policy)
- Backtracking to good solutions

Core concepts in DD-OPG

Global Return Distribution Estimator

- Incorporation of all data (off-policy)
- Backtracking to good solutions

Implementation:

 Importance sampling with empirical mixture distribution^[1]

$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} w_i(\theta) R(\tau_i) \qquad w_i(\theta) = \frac{p(\tau_i | \theta)}{\frac{1}{N} \sum_{j=0}^{N} p(\tau_i | \theta_j)}$$

[1] Jie, T. and Abbeel, P. On a connection between importance sampling and the likelihood ratio policy gradient. NeurIPS 2010.

9 Bosch Center for Artificial Intelligence | 2019-06-12

Core concepts in DD-OPG

Global Return Distribution Estimator

- Incorporation of all data (off-policy)
- Backtracking to good solutions

Deterministic Policy

- Reduced rollout stochasticity
- Richer behaviors with parameter space exploration^[2]

Implementation:

 Importance sampling with empirical mixture distribution^[2]

$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} w_i(\theta) R(\tau_i) \qquad w_i(\theta) = \frac{p(\tau_i|\theta)}{\frac{1}{N} \sum_{j=0}^{N} p(\tau_i|\theta_j)}$$

Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen, R. Y., Chen, X., Asfour, T., Abbeel, P., and Andrychowicz, M. Parameter space noise for exploration. ICLR 2018.
Jie, T. and Abbeel, P. On a connection between importance sampling and the likelihood ratio policy gradient. NeurIPS 2010.

9 Bosch Center for Artificial Intelligence | 2019-06-12

Core concepts in DD-OPG

Global Return Distribution Estimator

- Incorporation of all data (off-policy)
- Backtracking to good solutions

Implementation:

Importance sampling with empirical mixture distribution^[2]

Deterministic Policy

- Reduced rollout stochasticity
- Richer behaviors with parameter space exploration^[1]

Implementation:

- Model parameter Σ
- Length scale in action space

$$W(\theta) = \frac{1}{N} \sum_{i=1}^{N} w_i(\theta) R(\tau_i) \qquad w_i(\theta) = \frac{N(a_t \mid \mu_{\theta}(s_t), \Sigma)}{\frac{1}{N} \sum_{j=0}^{N} \prod_{t=0}^{H} N(a_t \mid \mu_{\theta}(s_t), \Sigma)}$$

Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen, R. Y., Chen, X., Asfour, T., Abbeel, P., and Andrychowicz, M. Parameter space noise for exploration. ICLR 2018.
Jie, T. and Abbeel, P. On a connection between importance sampling and the likelihood ratio policy gradient. NeurIPS 2010.

9 Bosch Center for Artificial Intelligence | 2019-06-12

Core concepts in DD-OPG

Global Return Distribution Estimator

- Incorporation of all data (off-policy)
- Backtracking to good solutions

Implementation:

Importance sampling with empirical mixture distribution^[2]

Deterministic Policy

- Reduced rollout stochasticity
- Richer behaviors with parameter space exploration^[1]

Distributional Policy Search

 Policy search leveraging lower bound

Implementation:

- Model parameter Σ
- Length scale in action space

$$V(\theta) = \frac{1}{N} \sum_{i=1}^{N} w_i(\theta) R(\tau_i) \qquad w_i(\theta) = \frac{N(a_t \mid \mu_{\theta}(s_t), \Sigma)}{\frac{1}{N} \sum_{j=0}^{N} \prod_{t=0}^{H} N(a_t \mid \mu_{\theta}(s_t), \Sigma)}$$

[1] Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen, R. Y., Chen, X., Asfour, T., Abbeel, P., and Andrychowicz, M. Parameter space noise for exploration. ICLR 2018. [2] Jie, T. and Abbeel, P. On a connection between importance sampling and the likelihood ratio policy gradient. NeurIPS 2010.

9 Bosch Center for Artificial Intelligence | 2019-06-12

Core concepts in DD-OPG

Global Return Distribution Estimator

- Incorporation of all data (off-policy)
- Backtracking to good solutions

Implementation:

Importance sampling with empirical mixture distribution^[2]

Deterministic Policy

- Reduced rollout stochasticity
- Richer behaviors with parameter space exploration^[1]

Distributional Policy Search

 Policy search leveraging lower bound

Implementation:

- Model parameter Σ
- Length scale in action space

Implementation:

 Estimation of empirical sample size and variance

$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} w_i(\theta) R(\tau_i) \qquad w_i(\theta) = \frac{N(a_t \mid \mu_{\theta}(s_t), \Sigma)}{\frac{1}{N} \sum_{j=0}^{N} \prod_{t=0}^{H} N(a_t \mid \mu_{\theta}(s_t), \Sigma)}$$

[1] Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen, R. Y., Chen, X., Asfour, T., Abbeel, P., and Andrychowicz, M. Parameter space noise for exploration. ICLR 2018. [2] Jie, T. and Abbeel, P. On a connection between importance sampling and the likelihood ratio policy gradient. NeurIPS 2010.

2 Bosch Center for Artificial Intelligence | 2019-06-12

Trajectory-Based Off-Policy Deep Reinforcement Learning Return Distribution Estimator

Importance sampling estimate

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. Trust region policy optimization. ICML 2015.
Metelli, A. M., Papini, M., Faccio, F., and Restelli, M. Policy optimization via importance sampling. NeurIPS 2018.

3 Bosch Center for Artificial Intelligence | 2019-06-12

Trajectory-Based Off-Policy Deep Reinforcement Learning Return Distribution Estimator

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. Trust region policy optimization. ICML 2015.
Metelli, A. M., Papini, M., Faccio, F., and Restelli, M. Policy optimization via importance sampling. NeurIPS 2018.

3 Bosch Center for Artificial Intelligence | 2019-06-12

Trajectory-Based Off-Policy Deep Reinforcement Learning Algorithmic Choices

	DD-OPG	REINFORC	E TRPO	РРО
Memory selection	All available trajectories Prioritized trajectory replay	Only on-policy samples from current batch		
Exploration	Parameter space	Action space		
Objective $\mathcal{L}(\theta)$	Expected return lower bound	Expected return	Expected return with KL constraint	Expected return (lower bound)
Optimization	Fully optimized with backtracking	One gradient step	Locally optimized	

Trajectory-Based Off-Policy Deep Reinforcement Learning Experimental Results – From REINFORCE to DD-OPG

Bosch Center for Artificial Intelligence | 2019-06-12

© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights

🗎 BOSCH

Trajectory-Based Off-Policy Deep Reinforcement Learning Experimental Results – Benchmark Results

– DD-OPG – REINFORCE – TRPO – PPO

- GARAGE: continuous control environments
- ► Gaussian MLP policy (16, 16)

Trajectory-Based Off-Policy Deep Reinforcement Learning Conclusion

- Novel off-policy policy gradient methods
- Enables data-efficient sample reuse
- Incorporation of low-noise deterministic rollouts
- Lengthscale in action space as only model assumption
- Promising benchmark results

DD-OPG (red) benchmark results

Bosch Center for Artificial Intelligence | 2019-06-12

