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Motivation

« Want more than one solution (i.e. novel solutions) to a problem.

* E.g. Ditferent Locomotion styles for legged robots.
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Key Aspects

* Novelty measurement function

» Measures the novelty of a trajectory compared with
trajectories from other policies

* Policy Gradient Update

* Make sure final gradient compromises between task and
novelty

» Task-Novelty Bisector (TNB)



Method Overview

* Define a separate novelty reward function apart from task reward.

* Train a policy using Task-Novelty Bisector (TNB) to balance the

optimization of task and novelty.
« Update novelty measurement function.

* Repeat



Novelty Measurement

» Use autoencoder reconstruction error of state sequences to compute

novelty. 1024 512 512 1024

* One autoencoder for each policy. I PR i I
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* For the set of autoencoders D = {D;, ..., D;}, the novelty reward

function is: ,
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ask-Novelty Bisector (TNB)

* Compute policy gradients for task reward and novelty reward
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« Compute the final policy gradient using the following rules:
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Multiple Solutions
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Multiple Solutions

TNB Policies
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Deceptive Reward Problems

e Our methods could be further extended to solve tasks with

deceptive reward signals.

* E.g. Deceptive Reacher
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Deceptive Reward Problems

TNB Policies

L—

e =
2 (&



Thank You!
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