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Contributions

e Proximal policy optimization [Schulman et al., 2017] : A stable on-policy RL algorithm.

e Limitations of PPO

— PPO has vanishing gradient problem in high dimensional tasks.

— On-policy learning of PPO is sample-inefficient.

e To overcome these drawbacks, we propose

1. Dimension-wise importance sampling weight clipping (DISC) : Solve the vanishing

gradient problem.

2. Off-policy generalization : Reuse old samples to enhance the sample-efficiency.
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Proximal Policy Optimization (PPO)

e PPO updates the policy parameter 6 to maximize importance weighted advantage:
| M-l
JPPO(6> — M Z min{pmAm, Clipe(pm>Am}

m=0
1 M-1

= M Z min{"ﬁmﬂma /fmdipe(pm)}/{mAm
m=0

7o (Am|Sm)

— Where pm = ﬂg.(am‘Sm)

is importance sampling (IS) weight,

— A,, is estimated by generalized advantage estimation (GAE) [Schulman et al., 2015],

A

—and clip.(-) =clip(-,1 —€,1 +€), K = sgn(An).
e PPO updates 6 when the IS weight is not clipped.

e Otherwise, it does not update 6.

e Clipped IS weight enables stable policy update.
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The Vanishing Gradient Problem

e [he gradient of clipped samples becomes zero and it reduces sample-efficiency.
e Larger p} := |1 — ps| + 1 makes more zero-gradient samples.

e For higher dimensional tasks, p is much larger than lower dimensional tasks.
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Figure 1: Average p; (left) and the amount of gradient vanishing (right)
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Dimension-Wise Clipping

e Clip dimension-wise IS weight : p; 4 1= :;'((C;tt’ilgt)) instead of total IS weight p;.

e Add IS weight loss : Jrg = 717 S M1 log(pm))? which enables stable learning.

m=0

e DISC updates 6 to maximize dimension-wise importance weighted advantage :

M-1 [D-1
1 A

Ipisc = % > A minfsnpras mcliv(pra) | wmAm — arsJis, (2)
m=0 La=o

where ajg is an adaptive coefficient.

e Even if dimension-wise IS weight is clipped for some dimensions, DISC has other dimensions

that are not clipped.

e The policy is updated to the gradient of unclipped dimensions.

= Hence, the sample gradient of DISC does not vanish in most samples!
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Off-Policy Generalization

e We want to reuse the previous batches to enhance sample-efficiency further.

e DISC reuses old batches that satisfies p, ; < 1 + ¢, to avoid too much clipping *.

e IS calibration to estimate the advantage of the old samples is needed.

e We combine GAE and V-trace [Espeholt et al., 2018] (GAE-V) to calibrate IS.
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Figure 2: The number of reused sample batches

* Seungyul Han and Youngchul Sung, "AMBER: Adaptive Multi-Batch Experience Replay for Continuous Action Control,” arXiv, Oct.
2018. https://arxiv.org/abs/1710.04423
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Evaluation

e Evaluation on Mujoco [Todorov et al., 2012] tasks in OpenAl GYM [Brockman et al., 2016].

Figure 3: Mujoco continuous control tasks
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Figure 4: Performance: Action dimension - Ant : 8 Humanoid :
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Evaluation

Comparison with state-of-the-art RL algorithms

e DDPG]Lillicrap et al.,2015], TRPO[Schulman et al.,2015], ACKTR[Wu et al.,2017],
Trust-PCL[Nachum et al.,2017], SQL[Haarnoja et al.,2017], TD3[Fujimoto et al., 2018],
SAC[Haarnoja et al.,2018].

e DISC has top-level performance in 5 tasks out of the 6 considered tasks.

e For HumanoidStandup, DISC has much higher performance than other algorithms.
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Figure 5: Max average return of DISC and other RL algorithms
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Conclusion

e DISC extends PPO by dimension-wise IS clipping and off-policy generalization.
e DISC solves the vanishing gradient problem and enhances sample-efficiency.

e DISC achieves top-level performance as compared to other state-of-the-art RL algorithms.
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