Dimension-Wise Importance Sampling Weight Clipping for Sample-Efficient Reinforcement Learning

Seungyul Han and Youngchul Sung

Dept. of Electrical Engineering

KAIST

ICML 2019, Long Beach, CA, USA

Jun. 12, 2019

Contributions

• Proximal policy optimization [Schulman et al., 2017] : A stable on-policy RL algorithm.

- Limitations of PPO
 - PPO has vanishing gradient problem in high dimensional tasks.
 - On-policy learning of PPO is sample-inefficient.
- To overcome these drawbacks, we propose
 - 1. Dimension-wise importance sampling weight clipping (DISC) : Solve the vanishing gradient problem.
 - 2. Off-policy generalization: Reuse old samples to enhance the sample-efficiency.

Proximal Policy Optimization (PPO)

 \bullet PPO updates the policy parameter θ to maximize importance weighted advantage:

$$\hat{J}_{PPO}(\theta) = \frac{1}{M} \sum_{m=0}^{M-1} \min\{\rho_m \hat{A}_m, \operatorname{clip}_{\epsilon}(\rho_m) \hat{A}_m\}$$

$$= \frac{1}{M} \sum_{m=0}^{M-1} \min\{\kappa_m \rho_m, \kappa_m \operatorname{clip}_{\epsilon}(\rho_m)\} \kappa_m \hat{A}_m$$
(1)

- where $ho_m = rac{\pi_{ heta}(a_m|s_m)}{\pi_{ heta_i}(a_m|s_m)}$ is importance sampling (IS) weight,
- \hat{A}_m is estimated by generalized advantage estimation (GAE) [Schulman et al., 2015],
- and $\operatorname{clip}_{\epsilon}(\cdot) = \operatorname{clip}(\cdot, 1 \epsilon, 1 + \epsilon)$, $\kappa_m = \operatorname{sgn}(\hat{A}_m)$.
- \bullet PPO updates θ when the IS weight is not clipped.
- Otherwise, it does not update θ .
- Clipped IS weight enables stable policy update.

4

The Vanishing Gradient Problem

- The gradient of clipped samples becomes zero and it reduces sample-efficiency.
- Larger $\rho_t' := |1 \rho_t| + 1$ makes more zero-gradient samples.
- ullet For higher dimensional tasks, ho_t' is much larger than lower dimensional tasks.

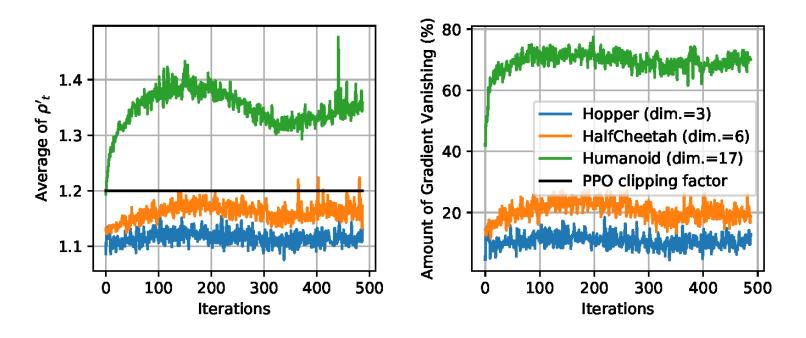


Figure 1: Average ρ'_t (left) and the amount of gradient vanishing (right)

Dimension-Wise Clipping

- Clip dimension-wise IS weight : $\rho_{t,d} := \frac{\pi_{\theta}(a_{t,d}|s_t)}{\pi_{\theta_i}(a_{t,d}|s_t)}$ instead of total IS weight ρ_t .
- ullet Add IS weight loss : $J_{IS} = \frac{1}{2M} \sum_{m=0}^{M-1} (\log(\rho_m))^2$ which enables stable learning.
- ullet DISC updates heta to maximize dimension-wise importance weighted advantage :

$$\hat{J}_{DISC} = \frac{1}{M} \sum_{m=0}^{M-1} \left[\prod_{d=0}^{D-1} \min \{ \kappa_m \rho_{t,d}, \kappa_m \text{clip}_{\epsilon}(\rho_{t,d}) \right] \kappa_m \hat{A}_m - \alpha_{IS} J_{IS}, \tag{2}$$

where α_{IS} is an adaptive coefficient.

- Even if dimension-wise IS weight is clipped for some dimensions, DISC has other dimensions that are not clipped.
- The policy is updated to the gradient of unclipped dimensions.
- ⇒ Hence, the sample gradient of DISC does not vanish in most samples!

Off-Policy Generalization

- We want to reuse the previous batches to enhance sample-efficiency further.
- DISC reuses old batches that satisfies $\rho'_{t,d} < 1 + \epsilon_b$ to avoid too much clipping *.
- IS calibration to estimate the advantage of the old samples is needed.
- We combine GAE and V-trace [Espeholt et al., 2018] (GAE-V) to calibrate IS.

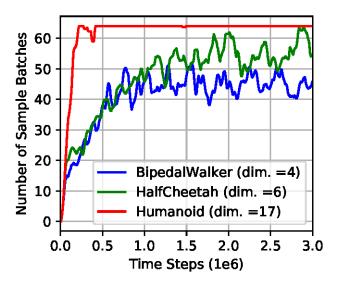


Figure 2: The number of reused sample batches

^{*} Seungyul Han and Youngchul Sung, "AMBER: Adaptive Multi-Batch Experience Replay for Continuous Action Control," arXiv, Oct. 2018. https://arxiv.org/abs/1710.04423

Evaluation

• Evaluation on Mujoco [Todorov et al., 2012] tasks in OpenAl GYM [Brockman et al., 2016].

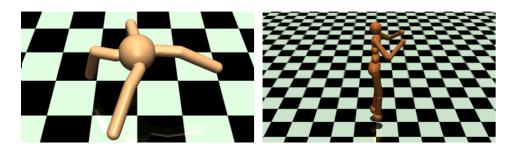


Figure 3: Mujoco continuous control tasks

Comparison with PPO baselines

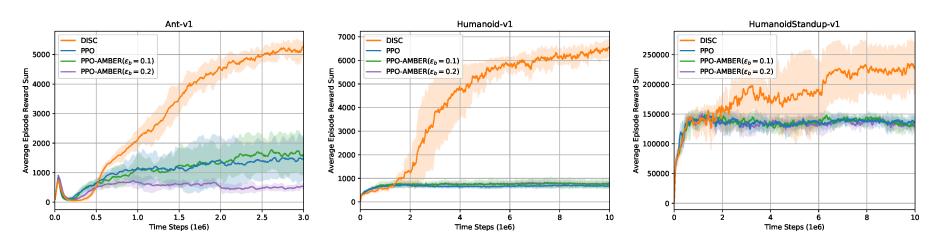


Figure 4: Performance: Action dimension - Ant : 8, Humanoid : 17, Humanoid Standup : 17.

Evaluation

Comparison with state-of-the-art RL algorithms

- DDPG[Lillicrap et al.,2015], TRPO[Schulman et al.,2015], ACKTR[Wu et al.,2017], Trust-PCL[Nachum et al.,2017], SQL[Haarnoja et al.,2017], TD3[Fujimoto et al., 2018], SAC[Haarnoja et al.,2018].
- DISC has top-level performance in 5 tasks out of the 6 considered tasks.
- For HumanoidStandup, DISC has much higher performance than other algorithms.

	DISC	PPO	DDPG	TRPO	ACKTR	Trust-PCL	SQL	TD3	SAC
Ant	5469.04	1628.96	-6.87	1562.98	3015.22	5482.45	2802.18	5508.08	5671.21
H-Cheetah	7413.89	2342.75	4020.33	2394.03	3678.57	5597.58	6673.42	11244.30	14817.63
Hopper	3570.40	3571.22	729.23	2662.36	3004.15	3073.03	2432.42	2942.88	3322.59
Humanoid	6705.12	821.30	857.98	1420.34	4814.80	138.46	5010.72	63.33	6883.53
Humanoid Standup	246435.89	154048.51	14220.05	147258.61	109655.30	79492.38	138996.84	58693.84	139513.04
Walker2d	4769.96	4202.48	810.93	2468.22	2350.81	2226.43	2592.78	4633.84	3884.05

Figure 5: Max average return of DISC and other RL algorithms

Conclusion

- DISC extends PPO by dimension-wise IS clipping and off-policy generalization.
- DISC solves the vanishing gradient problem and enhances sample-efficiency.
- DISC achieves top-level performance as compared to other state-of-the-art RL algorithms.

Thank you!

Poster Session : Jun. 12. (Wed), Pacific Ballroom #35