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• Need to account for rare events
• E.g. rare wind conditions leading to a crash
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• Monte Carlo estimate of the Policy Gradient has very high variance

⟹ Doomed to failure

Trajectories ~ 𝜋

Rare Events
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At each iteration, select parameters 𝜓 of 𝑞𝜓(𝐸𝑉)

such that it maximises one-step expected return
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Low dimensional representation
“Fingerprint” 

𝜋 is high dimensional

• 𝜋′ = 𝜋 + α𝛻𝐽 𝜋

• 𝐽 𝜋′ = f(𝜋, 𝜓)

• Model 𝐽 𝜋′ as a Gaussian Process with 
inputs (𝜋, 𝜓)
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Policy fingerprints

• Disambiguation, not accurate representation

• State/Action fingerprints: Gaussians fitted to the stationary 
state/action distribution induced by 𝜋

• Gross simplification, but good at disambiguating between policies
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Results

• Velocity target = 2 with probability 
98% and ‘normal’ reward

• Velocity target = 4 with probability 2% 
with significantly high reward
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Half Cheetah

• Reward proportional to velocity

• 5% chance that velocity > 2 leads to 
joint damage with large negative 
reward
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