
Dynamic Weights in Multi-Objective Deep
Reinforcement Learning

Axel Abels 1,2 Diederik Roijers 3 Tom Lenaerts 1,2

Ann Nowé 2 Denis Steckelmacher 2

1Machine Learning Group, Université Libre de Bruxelles

2Artificial Intelligence Lab, Vrije Universiteit Brussel

3Computational Intelligence, Vrije Universiteit Amsterdam

ICML 2019

Problem

• Multi-Objective Reinforcement Learning

• Vector-valued rewards: r
• Linear scalarization: ’Importance’ of each component: w
• Try to maximize weighted return:

E

[
∞∑
t=0

γt(w · rt)

]

Problem

• Multi-Objective Reinforcement Learning

• Vector-valued rewards: r

• Linear scalarization: ’Importance’ of each component: w
• Try to maximize weighted return:

E

[
∞∑
t=0

γt(w · rt)

]

Problem

• Multi-Objective Reinforcement Learning

• Vector-valued rewards: r
• Linear scalarization: ’Importance’ of each component: w

• Try to maximize weighted return:

E

[
∞∑
t=0

γt(w · rt)

]

Problem

• Multi-Objective Reinforcement Learning

• Vector-valued rewards: r
• Linear scalarization: ’Importance’ of each component: w
• Try to maximize weighted return:

E

[
∞∑
t=0

γt(w · rt)

]

Problem

• Dynamic Weights

• ’importance’ wt changes over time
• Quick adaptation needed to maximize:

E

[
∞∑
t=0

γt(wt · rt)

]

• Focus on high-dimensional problems

Problem

• Dynamic Weights
• ’importance’ wt changes over time

• Quick adaptation needed to maximize:

E

[
∞∑
t=0

γt(wt · rt)

]

• Focus on high-dimensional problems

Problem

• Dynamic Weights
• ’importance’ wt changes over time
• Quick adaptation needed to maximize:

E

[
∞∑
t=0

γt(wt · rt)

]

• Focus on high-dimensional problems

Problem

• Dynamic Weights
• ’importance’ wt changes over time
• Quick adaptation needed to maximize:

E

[
∞∑
t=0

γt(wt · rt)

]

• Focus on high-dimensional problems

Conditioned Network (CN)

|A| × N

|A|+1 × N

Conv.
Layer(s)

Fully
Connected

Layer(s)

(a) State
Input

(c) Weight
Input

Q-values

(d) Multi-
Objective

Dueling Head

w

(b) Feature
Extraction

Updating the Conditioned Network
Considered loss functions

1. Train on current weight vector wt

LOSSCN−ACTIVE = |y(j)
wt
−QCN(aj , sj ; wt)|

2. Train on randomly sampled past weight vector wj

LOSSCN−UVFA = |y(j)
wj
−QCN(aj , sj ; wj)|

3. Train on both

LOSSCN =
1

2

[
|y(j)

wt
−QCN(aj , sj ; wt)|+ |y(j)

wj
−QCN(aj , sj ; wj)|

]

Updating the Conditioned Network
Considered loss functions

1. Train on current weight vector wt

LOSSCN−ACTIVE = |y(j)
wt
−QCN(aj , sj ; wt)|

2. Train on randomly sampled past weight vector wj

LOSSCN−UVFA = |y(j)
wj
−QCN(aj , sj ; wj)|

3. Train on both

LOSSCN =
1

2

[
|y(j)

wt
−QCN(aj , sj ; wt)|+ |y(j)

wj
−QCN(aj , sj ; wj)|

]

Updating the Conditioned Network
Considered loss functions

1. Train on current weight vector wt

LOSSCN−ACTIVE = |y(j)
wt
−QCN(aj , sj ; wt)|

2. Train on randomly sampled past weight vector wj

LOSSCN−UVFA = |y(j)
wj
−QCN(aj , sj ; wj)|

3. Train on both

LOSSCN =
1

2

[
|y(j)

wt
−QCN(aj , sj ; wt)|+ |y(j)

wj
−QCN(aj , sj ; wj)|

]

Diverse Experience Replay (DER)
• Replay buffer bias

Diverse Experience Replay (DER)
• Replay buffer bias: how can we counter it?

Diverse Experience Replay (DER)
• Replay buffer bias: how can we counter it?
• By preserving diverse experiences

Replay buffer diversity with and
without DER. Each dot marks a
stored trajectory’s 3-dimensional re-
turn.

Our CN algorithm converges to near-optimality

Total regret when weights change regularly (lower is better)

Diversity is crucial for large but sparse weight changes

cu
m
ul
at
iv
e
re
gr
et

Total regret when weights change occasionally (lower is better)

Thank you!
• Poster #49

• 6:30pm to 9pm

	Background

