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Problem

• Multi-Objective Reinforcement Learning

• Vector-valued rewards: r
• Linear scalarization: ’Importance’ of each component: w
• Try to maximize weighted return:

E

[
∞∑
t=0

γt(w · rt)

]



Problem

• Multi-Objective Reinforcement Learning

• Vector-valued rewards: r

• Linear scalarization: ’Importance’ of each component: w
• Try to maximize weighted return:

E

[
∞∑
t=0

γt(w · rt)

]



Problem

• Multi-Objective Reinforcement Learning

• Vector-valued rewards: r
• Linear scalarization: ’Importance’ of each component: w

• Try to maximize weighted return:

E

[
∞∑
t=0

γt(w · rt)

]



Problem

• Multi-Objective Reinforcement Learning

• Vector-valued rewards: r
• Linear scalarization: ’Importance’ of each component: w
• Try to maximize weighted return:

E

[
∞∑
t=0

γt(w · rt)

]



Problem

• Dynamic Weights

• ’importance’ wt changes over time
• Quick adaptation needed to maximize:
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Conditioned Network (CN)
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Updating the Conditioned Network
Considered loss functions

1. Train on current weight vector wt

LOSSCN−ACTIVE = |y(j)
wt
−QCN(aj , sj ; wt)|

2. Train on randomly sampled past weight vector wj

LOSSCN−UVFA = |y(j)
wj
−QCN(aj , sj ; wj)|

3. Train on both

LOSSCN =
1

2

[
|y(j)

wt
−QCN(aj , sj ; wt)|+ |y(j)

wj
−QCN(aj , sj ; wj)|

]
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Diverse Experience Replay (DER)
• Replay buffer bias



Diverse Experience Replay (DER)
• Replay buffer bias: how can we counter it?



Diverse Experience Replay (DER)
• Replay buffer bias: how can we counter it?
• By preserving diverse experiences

Replay buffer diversity with and
without DER. Each dot marks a
stored trajectory’s 3-dimensional re-
turn.



Our CN algorithm converges to near-optimality

Total regret when weights change regularly (lower is better)



Diversity is crucial for large but sparse weight changes
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Total regret when weights change occasionally (lower is better)



Thank you!
• Poster #49

• 6:30pm to 9pm


	Background

