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Introduction

Imitation learning

learning from demonstration instead of a reward function

Demonstration

a set of decision makings (state-action pairs x)

Collected demonstration may be imperfect
Driving: traffic violation
Playing basketball: technical foul
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Motivation

Confidence: how optimal is state-action pair x (between 0 and 1)

A semi-supervised setting: demonstration partially equipped with confidence

How?

crowdsourcing: N(1)/(N(1) + N(0)).
digitized score: 0.0, 0.1, 0.2, . . . , 1.0
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Generative Adversarial Imitation Learning [1]

One-to-one correspondence between the policy π and the distribution of
demonstration [2]
Utilize generative adversarial training

min
θ

max
w

Ex∼pθ [logDw (x)] + Ex∼popt [log(1− Dw (x))]

Dw : discriminator, popt: demonstration distribution of πopt, and pθ: trajectory
distribution of agent πθ
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Problem Setting

Human switches to non-optimal policies when they make mistakes or are distracted

p(x) = α p(x |y = +1)︸ ︷︷ ︸
popt(x)

+(1− α) p(x |y = −1)︸ ︷︷ ︸
pnon(x)

Confidence: r(x) , Pr(y = +1|x)

Unlabeled demonstration: {xi}nui=1 ∼ p

Demonstration with confidence: {(xj , rj)}ncj=1 ∼ q
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Proposed Method 1: Two-Step Importance Weighting Imitation Learning

Step 1: estimate confidence by learning a confidence scoring function g

Unbiased risk estimator (come to Poster #47 for details):

RSC,`(g) = Ex ,r∼q[r · (`(g(x)))]︸ ︷︷ ︸
Risk for optimal

+Ex ,r∼q[(1− r)`(−g(x))]︸ ︷︷ ︸
Risk for non-optimal

Theorem

For δ ∈ (0, 1), with probability at least 1− δ over repeated sampling of data for training ĝ ,

RSC,`(ĝ)− RSC,`(g
∗) = Op( n

−1/2
c︸ ︷︷ ︸

# of confidence

+ n
−1/2
u︸ ︷︷ ︸

# of unlabeled

)

Step 2: employ importance weighting to reweight GAIL objective

Importance weighting

min
θ

max
w

Ex∼pθ [logDw (x)] + Ex∼p[
r̂(x)

α
log(1− Dw (x))]
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Proposed Method 2: GAIL with Imperfect Demonstration and Confidence

Mix the agent demonstration with the non-optimal one

p′ = αpθ + (1− α)pnon

Matching p′ with p enables pθ = popt and meanwhile benefits from the large amount
of unlabeled data.

Objective:

V (θ,Dw ) = Ex∼p[log(1− Dw (x))]︸ ︷︷ ︸
Risk for P class

+αEx∼pθ [logDw (x)] + Ex ,r∼q[(1− r) logDw (x)]︸ ︷︷ ︸
Risk for N class
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Setup

Confidence is given by a classifier trained with the demonstration mixture labeled as optimal
(y = +1) and non-optimal (y = −1)
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Results: Higher Average Return of the Proposed Methods

Environment: Mujoco
Proportion of labeled data: 20%
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Results: Unlabeled Data Helps

More unlabeled data results in lower variance and better performance

proposed methods are robust to noise

(a) Number of unlabeled data. The number in the
legend indicates proportion of orignal unlabeled data.

(b) Noise influence. The number in the legend indicates
standard deviation of Gaussian noise.

Yueh-Hua Wu et al. Imitation Learning from Imperfect Demonstration Poster #47 10 / 12



Conclusion

Two approaches that utilize both unlabeled and confidence data are proposed

Our methods are robust to labelers with noise

The proposed approaches can be generalized to other IL and IRL methods
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