Imitation Learning from Imperfect Demonstration

Yueh-Hua Wu^{1,2}, Nontawat Charoenphakdee^{3,2}, Han Bao^{3,2}, Voot Tangkaratt², Masashi Sugiyama^{2,3}

¹National Taiwan University

²RIKEN Center for Advanced Intelligence Project

³The University of Tokyo

Poster #47

- Imitation learning
 - learning from demonstration instead of a reward function
- Demonstration
 - a set of **decision makings** (state-action pairs *x*)
- Collected demonstration may be imperfect
 - Driving: traffic violation
 - Playing basketball: technical foul

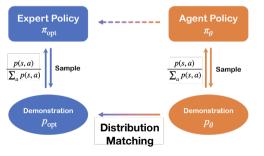
- **Confidence**: how optimal is state-action pair x (between 0 and 1)
- A semi-supervised setting: demonstration partially equipped with confidence
 How?
 - crowdsourcing: N(1)/(N(1) + N(0)).
 - digitized score: $0.0, 0.1, 0.2, \ldots, 1.0$

Generative Adversarial Imitation Learning [1]

- One-to-one correspondence between the policy π and the distribution of demonstration [2]
- Utilize generative adversarial training

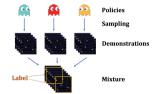
$$\min_{ heta} \max_{w} \mathbb{E}_{x \sim \mathcal{P}_{ heta}}[\log D_w(x)] + \mathbb{E}_{x \sim \mathcal{P}_{\mathrm{opt}}}[\log(1 - D_w(x))]$$

 D_w : discriminator, p_{opt} : demonstration distribution of π_{opt} , and p_{θ} : trajectory distribution of agent π_{θ}



Problem Setting

Human switches to non-optimal policies when they make mistakes or are distracted



$$p(x) = \alpha \underbrace{p(x|y=+1)}_{p_{opt}(x)} + (1-\alpha) \underbrace{p(x|y=-1)}_{p_{non}(x)}$$

- Confidence: $r(x) \triangleq \Pr(y = +1|x)$
- Unlabeled demonstration: $\{x_i\}_{i=1}^{n_u} \sim p$
- Demonstration with confidence: $\{(x_j, r_j)\}_{j=1}^{n_c} \sim q$

Proposed Method 1: Two-Step Importance Weighting Imitation Learning

Step 1: estimate confidence by learning a confidence scoring function g

• Unbiased risk estimator (come to Poster #47 for details):

$$R_{\mathrm{SC},\ell}(g) = \underbrace{\mathbb{E}_{x,r \sim q}[r \cdot (\ell(g(x)))]}_{x,r \sim q} + \underbrace{\mathbb{E}_{x,r \sim q}[(1-r)\ell(-g(x))]}_{x,r \sim q}$$

Risk for optimal

Risk for non-optimal

Theorem

For $\delta \in (0,1)$, with probability at least $1-\delta$ over repeated sampling of data for training \hat{g} ,

$$R_{ ext{SC},\ell}(\hat{g}) - R_{ ext{SC},\ell}(g^*) = \mathcal{O}_{\mathcal{P}}(\underbrace{n_c^{-1/2}}_{\# ext{ of confidence}} + \underbrace{n_u^{-1/2}}_{\# ext{ of unlabeled}}))$$

Step 2: employ importance weighting to reweight GAIL objective

• Importance weighting

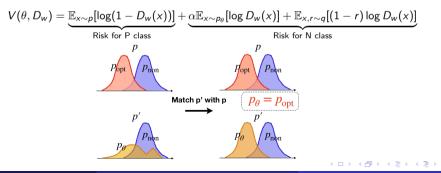
$$\min_{\theta} \max_{w} \mathbb{E}_{x \sim p_{\theta}} [\log D_{w}(x)] + \mathbb{E}_{x \sim p} [\frac{\hat{r}(x)}{\alpha} \log(1 - D_{w}(x))]$$

Proposed Method 2: GAIL with Imperfect Demonstration and Confidence

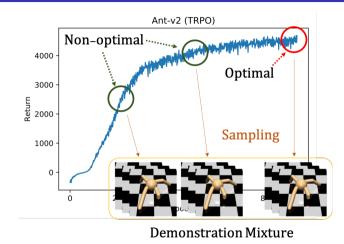
• Mix the agent demonstration with the non-optimal one

$$p' = \alpha p_{ heta} + (1 - \alpha) p_{
m non}$$

- Matching p' with p enables $p_{\theta} = p_{opt}$ and meanwhile **benefits from the large amount** of unlabeled data.
- Objective:



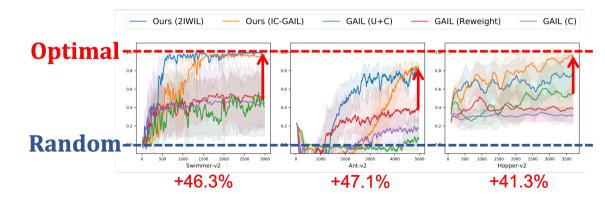
Setup



Confidence is given by a classifier trained with the demonstration mixture labeled as optimal (y = +1) and non-optimal (y = -1)Yueh-Hua Wu et al. Initation Learning from Imperfect Demonstration Poster #47 8/12

Results: Higher Average Return of the Proposed Methods

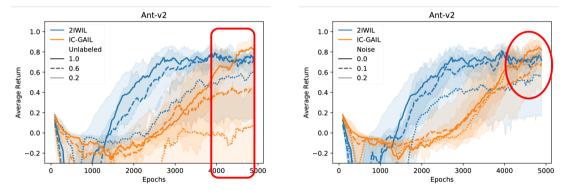
Environment: Mujoco Proportion of labeled data: 20%



Poster #47 9 / 12

Results: Unlabeled Data Helps

- More unlabeled data results in lower variance and better performance
- proposed methods are robust to noise



(a) Number of unlabeled data. The number in the legend indicates **proportion** of orignal unlabeled data.

(b) Noise influence. The number in the legend indicates **standard deviation** of Gaussian noise.

- Two approaches that utilize both unlabeled and confidence data are proposed
- Our methods are robust to labelers with noise
- The proposed approaches can be generalized to other IL and IRL methods

Poster #47

- [1] Ho, Jonathan, and Stefano Ermon. "Generative adversarial imitation learning." Advances in Neural Information Processing Systems. 2016.
- [2] Syed, Umar, Michael Bowling, and Robert E. Schapire. "Apprenticeship learning using linear programming." Proceedings of the 25th international conference on Machine learning. ACM, 2008.