Nonlinear Distributional Gradient Temporal Difference Learning

Chao Qu 1 Shie Mannor 2 Huan Xu 3

¹Ant Financial Services Group

²Faculty of Electrical Engineering, Technion

³H. Milton Stewart School of Industrial and Systems Engineering, Georgia Tech

- 日本 - 4 日本 - 4 日本 - 日本

The distributional reinforcement learning has gained much attention recently [Bellemare et al., 2017]. It explicitly considers the stochastic nature of the long term return Z(s, a).

The recursion of Z(s, a) is described by the distributional Bellman equation,

$$Z(s,a) \stackrel{D}{=} R(s,a) + \gamma Z(s',a'),$$

where $\stackrel{D}{=}$ stands for "equal in distribution"

The distributional reinforcement learning has gained much attention recently [Bellemare et al., 2017]. It explicitly considers the stochastic nature of the long term return Z(s, a).

The recursion of Z(s, a) is described by the distributional Bellman equation,

$$Z(s,a) \stackrel{D}{=} R(s,a) + \gamma Z(s',a'),$$

(日) (同) (三) (三) (三) (○) (○)

where $\stackrel{D}{=}$ stands for "equal in distribution"

Distributional gradient temporal differenct learning

We consider a distributional counterpart of Gradient Temporal Difference Learning [Sutton et al., 2008].

Properties:

- Convergence in the off-policy setting.
- Convergence with the nonlinear function approximation.

• Include distributional nature of the long term reward.

Distributional gradient temporal differenct learning

We consider a distributional counterpart of Gradient Temporal Difference Learning [Sutton et al., 2008].

Properties:

- Convergence in the off-policy setting.
- Convergence with the nonlinear function approximation.

• Include distributional nature of the long term reward.

To measure the distance between distributions Z(s, a) and TZ(s, a), we need to introduce Cramér distance.

Suppose there are two distributions P and Q and their cumulative distribution functions are F_P and F_Q respectively, then the square root of Cramér distance between P and Q is

$$\ell_2(P,Q) := \left(\int_{-\infty}^{\infty} (F_P(x) - F_Q(x))^2 dx\right)^{1/2}.$$

To measure the distance between distributions Z(s, a) and TZ(s, a), we need to introduce Cramér distance.

Suppose there are two distributions P and Q and their cumulative distribution functions are F_P and F_Q respectively, then the square root of Cramér distance between P and Q is

$$\ell_2(P,Q) := \big(\int_{-\infty}^{\infty} (F_P(x) - F_Q(x))^2 dx\big)^{1/2}$$

Denote the (cumulative) distribution function of Z(s) as $F_{\theta}(s, z)$, $G_{\theta}(s, z)$ as the distribution function of $\mathcal{T}Z(s)$.

D-MSPBE:

minimize:
$$J(\theta) := \|\Phi_{\theta}^T D(F_{\theta} - G_{\theta})\|_{(\Phi_{\theta}^T D\Phi_{\theta})^{-1}}^2$$

Denote the (cumulative) distribution function of Z(s) as $F_{\theta}(s, z)$, $G_{\theta}(s, z)$ as the distribution function of $\mathcal{T}Z(s)$.

D-MSPBE:

minimize:
$$J(\theta) := \|\Phi_{\theta}^T D(F_{\theta} - G_{\theta})\|_{(\Phi_{\theta}^T D \Phi_{\theta})^{-1}}^2$$

• Value distribution $(F_{\theta}(s, z))$ is discrete within the range $[V_{\min}, V_{\max}]$ with *m* atoms.

•
$$\phi_{\theta}(s, z) = \frac{\partial F_{\theta}(s, z)}{\partial \theta}$$
 and $(\Phi_{\theta})_{((i,j),l)} = \frac{\partial}{\partial \theta_l} F_{\theta}(s_i, z_j).$

 Project onto the space spanned by Φ w.r.t. the Cramér distance and then obtain D-MSPBE.

• SGD and weight duplication trick to optimize it.

Distributional GTD2

Input: step size α_t , step size β_t , policy π . for t = 0, 1, ... do

$$w_{t+1} = w_t + \beta_t \sum_{j=1}^{m} \left(-\phi_{\theta_t}^T(s_t, z_j) w_t + \delta_{\theta_t} \right) \phi_{\theta_t}(s_t, z_j)$$

$$\theta_{t+1} = \Gamma[\theta_t + \alpha_t \{ \sum_{j=1}^{m} \left(\phi_{\theta_t}(s_t, z_j) - \phi_{\theta_t}(s_{t+1}, \frac{z_j - r_t}{\gamma}) \right) \\ \phi_{\theta_t}^{T}(s_t, z_j) w_t - h_t \}]$$

 $\Gamma: \mathbb{R}^d \to \mathbb{R}^d$ is a projection onto an compact set *C* with a smooth boundary.

$$h_{t} = \sum_{j=1}^{m} (\delta_{\theta_{t}} - w_{t}^{T} \phi_{\theta_{t}}(s_{t}, z_{j})) \nabla^{2} F_{\theta_{t}}(s_{t}, z_{j}) w_{t},$$

where $\delta_{\theta_{t}} = F_{\theta_{t}}(s_{t+1}, \frac{z_{j} - r_{t}}{\gamma}) - F_{\theta_{t}}(s_{t}, z_{j}).$
end for

Some remarks:

- Use the temporal distribution difference δ_{θ_t} instead of the temporal difference in GTD2.
- Summation over z_j, which corresponds to the integral in the Cramér distance.
- *h_t* results from the nonlinear function approximation, which is zero in the linear case. it can be evaluated using forward and backward propagation.

Theoretical Result

Theorem

Let $(s_t, r_t, s'_t)_{t\geq 0}$ be a sequence of transitions. The positive step-sizes in the algrithm satisfy $\sum_{t=0}^{\infty} a_t = \infty$, $\sum_{t=0}^{\infty} \beta_t = \infty$, $\sum_{t=0}^{\infty} \alpha_t^2$, $\sum_{t=1}^{\infty} \beta_t^2 < \infty$ and $\frac{\alpha_t}{\beta_t} \to 0$, as $t \to \infty$. Assume that for any $\theta \in C$ and $s \in S$ s.t. d(s) > 0, F_{θ} is three times continuously differentiable. Further assume that for each $\theta \in C$, $(\mathbb{E} \sum_{j=1}^{m} \phi_{\theta}(s, z_j) \phi_{\theta}^{\mathsf{T}}(s, z_j))$ is nonsingular. Then the Algorithm converges with probability one, as $t \to \infty$.

(日) (同) (三) (三) (三) (○) (○)

Distributional Greedy GQ

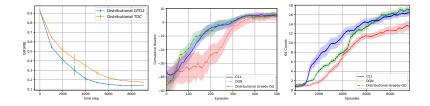
Input: step size α_t , step size β_t , $0 \le \eta \le 1$ for t = 0, 1, ... do $Q(s_{t+1}, a) = \sum_{j=1}^m z_j p_j(s_t, a)$, where $p_j(s_t, a)$ is the density function w.r.t. $F_{\theta}((s_t, a))$. $a^* = \arg \max_a Q(s_{t+1}, a)$.

$$w_{t+1} = w_t + \beta_t \sum_{j=1}^m \left(-\phi_{\theta_t}^T((s_t, a_t), z_j) w_t + \delta_{\theta_t} \right) \\ \times \phi_{\theta_t}((s_t, a_t), z_j).$$

$$\theta_{t+1} = \theta_t + \alpha_t \{ \sum_{j=1}^m (\delta_{\theta_t} \phi_{\theta_t}((s_t, a_t), z_j) - \eta \phi_{\theta_t}((s_{t+1}, a^*), \frac{z_j - r_t}{\gamma})(\phi_{\theta_t}^T((s_t, a_t), z_j)w_t)) \}.$$

where $\delta_{\theta_t} = F_{\theta_t}((s_{t+1}, a^*), \frac{z_j - r_t}{\gamma}) - F_{\theta_t}((s_t, a_t), z_j).$ end for

Experimental Result



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Thank you!

Visit our poster today at pacific Ballroom #33.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?