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The distributional reinforcement learning has gained much
attention recently [Bellemare et al., 2017]. It explicitly considers
the stochastic nature of the long term return Z (s, a) .

The recursion of Z (s, a) is described by the distributional Bellman
equation,

Z (s, a)
D
= R(s, a) + γZ (s ′, a′),

where
D
= stands for “equal in distribution”
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Distributional gradient temporal differenct learning

We consider a distributional counterpart of Gradient Temporal
Difference Learning [Sutton et al., 2008].

Properties:

• Convergence in the off-policy setting.

• Convergence with the nonlinear function approximation.

• Include distributional nature of the long term reward.
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To measure the distance between distributions Z (s, a) and
T Z (s, a), we need to introduce Cramér distance.

Suppose there are two distributions P and Q and their cumulative
distribution functions are FP and FQ respectively, then the square
root of Cramér distance between P and Q is

`2(P,Q) :=
( ∫ ∞
−∞

(FP(x)− FQ(x))2dx
)1/2

.
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Denote the (cumulative) distribution function of Z (s) as Fθ(s, z),
Gθ(s, z) as the distribution function of T Z (s).

D-MSPBE:

minimize:
θ

J(θ) := ‖ΦT
θ D(Fθ − Gθ)‖2

(ΦT
θ DΦθ)−1 ,
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• Value distribution (Fθ(s, z)) is discrete within the range
[Vmin,Vmax] with m atoms.

• φθ(s, z) = ∂Fθ(s,z)
∂θ and (Φθ)((i ,j),l) = ∂

∂θl
Fθ(si , zj).

• Project onto the space spanned by Φ w.r.t. the Cramér
distance and then obtain D-MSPBE.

• SGD and weight duplication trick to optimize it.



Distributional GTD2

Input: step size αt , step size βt , policy π.
for t = 0, 1, ... do

wt+1 = wt + βt

m∑∑∑
j=1

(
− φTθt (st , zj)wt + δθt

)
φθt (st , zj)

θt+1 =Γ[θt + αt{
m∑∑∑

j=1

(
φθt (st , zj)− φθt(st+1,

zj − rt
γ

)
)

φTθt (st , zj)wt − ht}]

Γ : Rd → Rd is a projection onto an compact set C with a
smooth boundary.
ht =

∑∑∑m
j=1(δθt − wT

t φθt (st , zj))∇2Fθt (st , zj)wt ,

where δθt = Fθt (st+1,
zj−rt
γ )− Fθt (st , zj).

end for



Some remarks:

• Use the temporal distribution difference δθt instead of the
temporal difference in GTD2.

• Summation over zj , which corresponds to the integral in the
Cramér distance.

• ht results from the nonlinear function approximation, which is
zero in the linear case. it can be evaluated using forward and
backward propagation.



Theoretical Result

Theorem
Let (st , rt , s

′
t)t≥0 be a sequence of transitions. The positive

step-sizes in the algrithm satisfy
∑∞

t=0 at =∞,
∑∞

t=0 βt =∞,∑∞
t=0 α

2
t ,
∑∞

t=1 β
2
t <∞ and αt

βt
→ 0, as t →∞ . Assume that for

any θ ∈ C and s ∈ S s.t. d(s) > 0, Fθ is three times continuously
differentiable. Further assume that for each θ ∈ C ,(
E
∑m

j=1 φθ(s, zj)φ
T
θ (s, zj)

)
is nonsingular. Then the Algorithm

converges with probability one, as t →∞.



Distributional Greedy GQ

Input: step size αt , step size βt , 0 ≤ η ≤ 1
for t = 0, 1, ... do
Q(st+1, a) =

∑m
j=1 zjpj(st , a), where pj(st , a) is the density

function w.r.t. Fθ((st , a)). a∗ = arg maxa Q(st+1, a).

wt+1 = wt + βt

m∑
j=1

(
− φTθt ((st , at), zj)wt + δθt

)
× φθt ((st , at), zj).

θt+1 = θt + αt{
m∑
j=1

(
δθtφθt ((st , at), zj)−

ηφθt ((st+1, a
∗),

zj − rt
γ

)(φTθt ((st , at), zj)wt)
)
}.

where δθt = Fθt ((st+1, a
∗),

zj−rt
γ )− Fθt ((st , at), zj).

end for



Experimental Result
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Thank you!

Visit our poster today at pacific Ballroom #33.


