Nonlinear Distributional Gradient Temporal Difference Learning

Chao Qu ${ }^{1}$ Shie Mannor ${ }^{2}$ Huan $X u^{3}$

${ }^{1}$ Ant Financial Services Group
${ }^{2}$ Faculty of Electrical Engineering, Technion
${ }^{3}$ H. Milton Stewart School of Industrial and Systems Engineering, Georgia Tech

The distributional reinforcement learning has gained much attention recently [Bellemare et al., 2017]. It explicitly considers the stochastic nature of the long term return $Z(s, a)$.

The recursion of $Z(s, a)$ is described by the distributional Bellman
equation,

$$
Z(s, a) \stackrel{D}{=} R(s, a)+\gamma Z\left(s^{\prime}, a^{\prime}\right)
$$

where $\stackrel{D}{=}$ stands for "equal in distribution"

The distributional reinforcement learning has gained much attention recently [Bellemare et al., 2017]. It explicitly considers the stochastic nature of the long term return $Z(s, a)$.

The recursion of $Z(s, a)$ is described by the distributional Bellman equation,

$$
Z(s, a) \stackrel{D}{=} R(s, a)+\gamma Z\left(s^{\prime}, a^{\prime}\right)
$$

where $\stackrel{D}{=}$ stands for "equal in distribution"

Distributional gradient temporal differenct learning

We consider a distributional counterpart of Gradient Temporal Difference Learning [Sutton et al., 2008].

Properties:

- Convergence in the off-policy setting.
- Convergence with the nonlinear function approximation
- Include distributional nature of the long term reward.

Distributional gradient temporal differenct learning

We consider a distributional counterpart of Gradient Temporal Difference Learning [Sutton et al., 2008].

Properties:

- Convergence in the off-policy setting.
- Convergence with the nonlinear function approximation.
- Include distributional nature of the long term reward.

To measure the distance between distributions $Z(s, a)$ and $\mathcal{T} Z(s, a)$, we need to introduce Cramér distance.

Suppose there are two distributions P and Q and their cumulative distribution functions are F_{P} and F_{Q} respectively, then the square root of Cramér distance between P and Q is

To measure the distance between distributions $Z(s, a)$ and $\mathcal{T} Z(s, a)$, we need to introduce Cramér distance.

Suppose there are two distributions P and Q and their cumulative distribution functions are F_{P} and F_{Q} respectively, then the square root of Cramér distance between P and Q is

$$
\ell_{2}(P, Q):=\left(\int_{-\infty}^{\infty}\left(F_{P}(x)-F_{Q}(x)\right)^{2} d x\right)^{1 / 2}
$$

Denote the (cumulative) distribution function of $Z(s)$ as $F_{\theta}(s, z)$, $G_{\theta}(s, z)$ as the distribution function of $\mathcal{T} Z(s)$.

D-MSPBE:

Denote the (cumulative) distribution function of $Z(s)$ as $F_{\theta}(s, z)$, $G_{\theta}(s, z)$ as the distribution function of $\mathcal{T} Z(s)$.

D-MSPBE:

$$
\underset{\theta}{\operatorname{minimize}}: \quad J(\theta):=\left\|\Phi_{\theta}^{T} D\left(F_{\theta}-G_{\theta}\right)\right\|_{\left(\Phi_{\theta}^{\top} D \Phi_{\theta}\right)^{-1}}^{2},
$$

- Value distribution $\left(F_{\theta}(s, z)\right)$ is discrete within the range [$V_{\text {min }}, V_{\text {max }}$] with m atoms.
- $\phi_{\theta}(s, z)=\frac{\partial F_{\theta}(s, z)}{\partial \theta}$ and $\left(\Phi_{\theta}\right)_{((i, j), l)}=\frac{\partial}{\partial \theta_{l}} F_{\theta}\left(s_{i}, z_{j}\right)$.
- Project onto the space spanned by Φ w.r.t. the Cramér distance and then obtain D-MSPBE.
- SGD and weight duplication trick to optimize it.

Distributional GTD2

Input: step size α_{t}, step size β_{t}, policy π. for $t=0,1, \ldots$ do

$$
\begin{aligned}
w_{t+1} & =w_{t}+\beta_{t} \sum_{\boldsymbol{j}=\boldsymbol{1}}^{\boldsymbol{m}}\left(-\phi_{\theta_{t}}^{T}\left(s_{t}, z_{j}\right) w_{t}+\boldsymbol{\delta}_{\theta_{\boldsymbol{t}}}\right) \phi_{\theta_{t}}\left(s_{t}, z_{j}\right) \\
\theta_{t+1}= & \Gamma\left[\theta_{t}+\alpha_{t}\left\{\sum_{\boldsymbol{j}=\boldsymbol{1}}^{\boldsymbol{m}}\left(\phi_{\theta_{t}}\left(s_{t}, z_{j}\right)-\phi_{\theta_{\boldsymbol{t}}}\left(s_{\boldsymbol{t}+\boldsymbol{1}}, \frac{\boldsymbol{z}_{\boldsymbol{j}}-\boldsymbol{r}_{\boldsymbol{t}}}{\gamma}\right)\right)\right.\right. \\
& \left.\left.\phi_{\theta_{t}}^{T}\left(s_{t}, z_{j}\right) w_{t}-h_{t}\right\}\right]
\end{aligned}
$$

$\Gamma: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is a projection onto an compact set C with a smooth boundary.
$h_{t}=\sum_{j=1}^{\boldsymbol{m}}\left(\delta_{\theta_{t}}-w_{t}^{T} \phi_{\theta_{t}}\left(s_{t}, z_{j}\right)\right) \nabla^{2} F_{\theta_{t}}\left(s_{t}, z_{j}\right) w_{t}$,
where $\boldsymbol{\delta}_{\theta_{t}}=F_{\theta_{t}}\left(s_{t+1}, \frac{z_{j}-r_{t}}{\gamma}\right)-F_{\theta_{t}}\left(s_{t}, z_{j}\right)$.
end for

Some remarks:

- Use the temporal distribution difference $\delta_{\theta_{t}}$ instead of the temporal difference in GTD2.
- Summation over z_{j}, which corresponds to the integral in the Cramér distance.
- h_{t} results from the nonlinear function approximation, which is zero in the linear case. it can be evaluated using forward and backward propagation.

Theoretical Result

Theorem
Let $\left(s_{t}, r_{t}, s_{t}^{\prime}\right)_{t \geq 0}$ be a sequence of transitions. The positive step-sizes in the algrithm satisfy $\sum_{t=0}^{\infty} a_{t}=\infty, \sum_{t=0}^{\infty} \beta_{t}=\infty$, $\sum_{t=0}^{\infty} \alpha_{t}^{2}, \sum_{t=1}^{\infty} \beta_{t}^{2}<\infty$ and $\frac{\alpha_{t}}{\beta_{t}} \rightarrow 0$, as $t \rightarrow \infty$. Assume that for any $\theta \in C$ and $s \in \mathcal{S}$ s.t. $d(s)>0, F_{\theta}$ is three times continuously differentiable. Further assume that for each $\theta \in C$, $\left(\mathbb{E} \sum_{j=1}^{m} \phi_{\theta}\left(s, z_{j}\right) \phi_{\theta}^{T}\left(s, z_{j}\right)\right)$ is nonsingular. Then the Algorithm converges with probability one, as $t \rightarrow \infty$.

Distributional Greedy GQ

Input: step size α_{t}, step size $\beta_{t}, 0 \leq \eta \leq 1$ for $t=0,1, \ldots$ do $Q\left(s_{t+1}, a\right)=\sum_{j=1}^{m} z_{j} p_{j}\left(s_{t}, a\right)$, where $p_{j}\left(s_{t}, a\right)$ is the density function w.r.t. $F_{\theta}\left(\left(s_{t}, a\right)\right) . a^{*}=\arg \max _{a} Q\left(s_{t+1}, a\right)$.

$$
\begin{gathered}
w_{t+1}=w_{t}+\beta_{t} \sum_{j=1}^{m}\left(-\phi_{\theta_{t}}^{T}\left(\left(s_{t}, a_{t}\right), z_{j}\right) w_{t}+\delta_{\theta_{t}}\right) \\
\times \phi_{\theta_{t}}\left(\left(s_{t}, a_{t}\right), z_{j}\right) \\
\theta_{t+1}=\theta_{t}+\alpha_{t}\left\{\sum _ { j = 1 } ^ { m } \left(\delta_{\theta_{t}} \phi_{\theta_{t}}\left(\left(s_{t}, a_{t}\right), z_{j}\right)-\right.\right. \\
\left.\left.\eta \phi_{\theta_{t}}\left(\left(s_{t+1}, a^{*}\right), \frac{z_{j}-r_{t}}{\gamma}\right)\left(\phi_{\theta_{t}}^{T}\left(\left(s_{t}, a_{t}\right), z_{j}\right) w_{t}\right)\right)\right\}
\end{gathered}
$$

where $\delta_{\theta_{t}}=F_{\theta_{t}}\left(\left(s_{t+1}, a^{*}\right), \frac{z_{j}-r_{t}}{\gamma}\right)-F_{\theta_{t}}\left(\left(s_{t}, a_{t}\right), z_{j}\right)$.

Experimental Result

Thank you!

Visit our poster today at pacific Ballroom \#33.

