Making Deep Q-learning Approaches Robust to Time Discretization

Corentin Tallec Léonard Blier Yann Ollivier

Université Paris-Sud, Facebook Al Research

June 4, 2019

Reinforcement Learning in Near Continuous Time

What happens when using standard RL methods with small time discretization or high framerate?

- ullet Usual RL algorithm + high framerate o failure
- Scalability limited by algorithms!
 Better hardware, sensors, actuators → Worse performance
- Contributes to lack of robustness of Deep RL:
 New environment → different framerate → new hyperparameters.

Low FPS High FPS

Why is near continuous Q-learning failing?

There is no continuous time Q-learning

- ullet As $\delta t o 0$, $Q^\pi(s,a) o V^\pi(s)$
- Q^{π} does not depend on actions when $\delta t \to 0$ \Longrightarrow Cannot use Q^{π} to select actions!

There is no continuous time ε -greedy exploration

• ε -greedy, $\varepsilon = 1$ pendulum:

$$\delta t = .05$$

$$\delta t = .0001$$

Can we solve this?

YES

To know how:

Poster #32 this evening

Low FPS

High FPS