Understanding Priors in Bayesian Neural Networks at the Unit Level

Mariia Vladimirova, Jakob Verbeek, Pablo Mesejo, Julyan Arbel

Inria, Grenoble, France

🖂 mariia.vladimirova@inria.fr

International Conference on Machine Leaning June 13, 2019

Outline

Sub-Weibull distributions

Main result: Prior on units gets heavier-tailed with depth

Regularization interpretation

Distribution families with respect to tail behavior

(m | k | k) 1/k

For all $k \in \mathbb{N}$, k-th row moment: $\ X\ _k = (\mathbb{E} X ^n)^{-1}$			
Distribution	Tail	Moments	
Sub-Gaussian	$\overline{F}(x) \leq \mathrm{e}^{-\lambda x^2}$	$\ X\ _k \leq C\sqrt{k}$	
Sub-Exponential	$\overline{F}(x) \leq \mathrm{e}^{-\lambda x}$	$\ X\ _k \leq Ck$	
Sub-Weibull	$\overline{F}(x) \leq \mathrm{e}^{-\lambda x^{1/ heta}}$	$\ X\ _k \leq Ck^{ heta}$	

- $\theta > 0$ called tail parameter
- $\|X\|_k \asymp k^{\theta} \implies X \sim \text{subW}(\theta), \ \theta \text{ called optimal}$
- subW(1/2) = subG, subW(1) = subE
- Larger θ implies heavier tail

Vladimirova et al. Understanding priors in Bayesian neural networks at the unit level

Outline

Sub-Weibull distributions

Main result: Prior on units gets heavier-tailed with depth

Regularization interpretation

We analyze Bayesian neural networks which satisfy the following assumptions

(A1) Parameters. The weights w have i.i.d. Gaussian prior

w $\sim \mathcal{N}(\mu,\sigma^2)$

(A2) Nonlinearity. ReLU-like with envelope property: exist $c_1, c_2, d_2 \ge 0$, $d_1 > 0$ s.t.

 $ert \phi(u) ert \geq c_1 + d_1 ert u ert$ for all $u \in \mathbb{R}_+$ or $u \in \mathbb{R}_-$, $ert \phi(u) ert \leq c_2 + d_2 ert u ert$ for all $u \in \mathbb{R}$.

- Examples: ReLU, ELU, PReLU etc, but no compactly supported like sigmoid and tanh.
- Nonlinearity does not harm the distributional tail:

 $\|\phi(X)\|_k symp \|X\|_k, \quad k \in \mathbb{N}$

We analyze Bayesian neural networks which satisfy the following assumptions

(A1) Parameters. The weights w have i.i.d. Gaussian prior

 $\mathbf{w} \sim \mathcal{N}(\mu, \sigma^2)$

(A2) Nonlinearity. ReLU-like with envelope property: exist $c_1, c_2, d_2 \ge 0$, $d_1 > 0$ s.t.

 $ert \phi(u) ert \geq c_1 + d_1 ert u ert$ for all $u \in \mathbb{R}_+$ or $u \in \mathbb{R}_-$, $ert \phi(u) ert \leq c_2 + d_2 ert u ert$ for all $u \in \mathbb{R}$.

- Examples: ReLU, ELU, PReLU etc, but no compactly supported like sigmoid and tanh.
- Nonlinearity does not harm the distributional tail:

 $\|\phi(X)\|_k \asymp \|X\|_k, \quad k \in \mathbb{N}$

We analyze Bayesian neural networks which satisfy the following assumptions

(A1) Parameters. The weights w have i.i.d. Gaussian prior

 $\mathbf{w} \sim \mathcal{N}(\mu, \sigma^2)$

(A2) Nonlinearity. ReLU-like with envelope property: exist $c_1, c_2, d_2 \ge 0$, $d_1 > 0$ s.t.

 $ert \phi(u) ert \ge c_1 + d_1 ert u ert$ for all $u \in \mathbb{R}_+$ or $u \in \mathbb{R}_-$, $ert \phi(u) ert \le c_2 + d_2 ert u ert$ for all $u \in \mathbb{R}$.

- Examples: ReLU, ELU, PReLU etc, but no compactly supported like sigmoid and tanh.
- Nonlinearity does not harm the distributional tail:

 $\|\phi(X)\|_k symp \|X\|_k, \quad k \in \mathbb{N}$

We analyze Bayesian neural networks which satisfy the following assumptions

(A1) Parameters. The weights w have i.i.d. Gaussian prior

 $\mathbf{w} \sim \mathcal{N}(\mu, \sigma^2)$

(A2) Nonlinearity. ReLU-like with envelope property: exist $c_1, c_2, d_2 \ge 0$, $d_1 > 0$ s.t.

 $ert \phi(u) ert \ge c_1 + d_1 ert u ert$ for all $u \in \mathbb{R}_+$ or $u \in \mathbb{R}_-$, $ert \phi(u) ert \le c_2 + d_2 ert u ert$ for all $u \in \mathbb{R}$.

- Examples: ReLU, ELU, PReLU etc, but no compactly supported like sigmoid and tanh.
- Nonlinearity does not harm the distributional tail:

 $\|\phi(X)\|_k \asymp \|X\|_k, \quad k \in \mathbb{N}$

Main theorem

Consider a Bayesian neural network with (A1) i.i.d. Gaussian priors on the weights and (A2) nonlinearity satisfying envelope property.

Then conditional on input x, the marginal prior distribution of a unit $u^{(\ell)}$ of ℓ -th hidden layer is sub-Weibull with optimal tail parameter $\theta = \ell/2$: $\pi^{(\ell)}(u) \sim \text{subW}(\ell/2)$

Vladimirova et al. Understanding priors in Bayesian neural networks at the unit level

Outline

Sub-Weibull distributions

Main result: Prior on units gets heavier-tailed with depth

Regularization interpretation

Interpretation: shrinkage effect

Maximum a Posteriori (MAP) is a Regularized problem

$$\max_{\mathbf{W}} \pi(\mathbf{W}|\mathcal{D}) \propto \mathcal{L}(\mathcal{D}|\mathbf{W})\pi(\mathbf{W})$$
$$\min_{\mathbf{W}} - \log \mathcal{L}(\mathcal{D}|\mathbf{W}) - \log \pi(\mathbf{W})$$
$$\min_{\mathbf{W}} L(\mathbf{W}) + \lambda R(\mathbf{W})$$

 $L(\mathbf{W})$ is a loss function, $R(\mathbf{W})$ is a norm on \mathbb{R}^{p} , regularizer. $\begin{array}{ll} \text{Weight distribution} & \ell\text{-th layer unit distribution} \\ \pi(w) \approx e^{-w^2} & \Rightarrow & \pi^{(\ell)}(u) \approx e^{-u^{2/\ell}} \end{array}$

Layer	Penalty on W	Penalty on	U
1	$\ \mathbf{W}^{(1)}\ _2^2$, \mathcal{L}^2	$\ {f U}^{(1)} \ _2^2$	\mathcal{L}^2 (weight decay)
2	$\ \mathbf{W}^{(2)}\ _2^2$, \mathcal{L}^2	$\ \mathbf{U}^{(2)}\ $	\mathcal{L}^1 (Lasso)
l	$\ \mathbf{W}^{(\ell)}\ _2^2$, \mathcal{L}^2	$\ \mathbf{U}^{(\ell)}\ _{2/\ell}^{2/\ell}$	$\mathcal{L}^{2/\ell}$

Conclusion

- (i) We define the notion of sub-Weibull distributions, which are characterized by tails lighter than (or equally light as) Weibull distributions.
- (ii) We prove that the marginal prior distribution of the units are heavier-tailed as depth increases.
- (iii) We offer an interpretation from a regularization viewpoint.

Future directions:

- Prove the Gaussian process limit of sub-Weibull distributions in the wide regime;
- Investigate if the described regularization mechanism induces sparsity at the unit level.

Vladimirova et al. Understanding priors in Bayesian neural networks at the unit level