Faster Attend-Infer-Repeat with Tractable Probabilistic Models

<u>Karl Stelzner</u>¹, Robert Peharz², Kristian Kersting^{1,3}

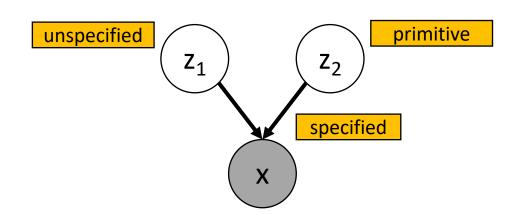
¹ Machine Learning Group, TU Darmstadt
² Machine Learning Group, University of Cambridge
³ Centre for Cognitive Science, TU Darmstadt

ICML 2019

June 13, 2019

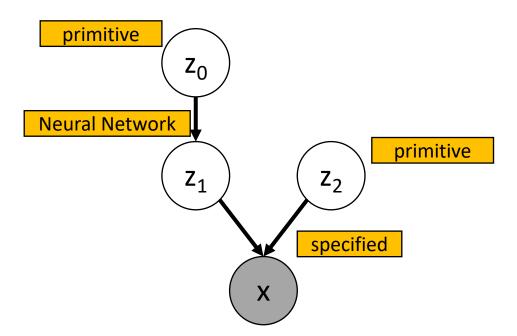
Deep Models with Tractable Components

- Deep generative models are a powerful tool
- Scaling is limited by effectiveness of approximate inference
- Can we improve this by combining them with tractable models, such as Sum-Product Networks?



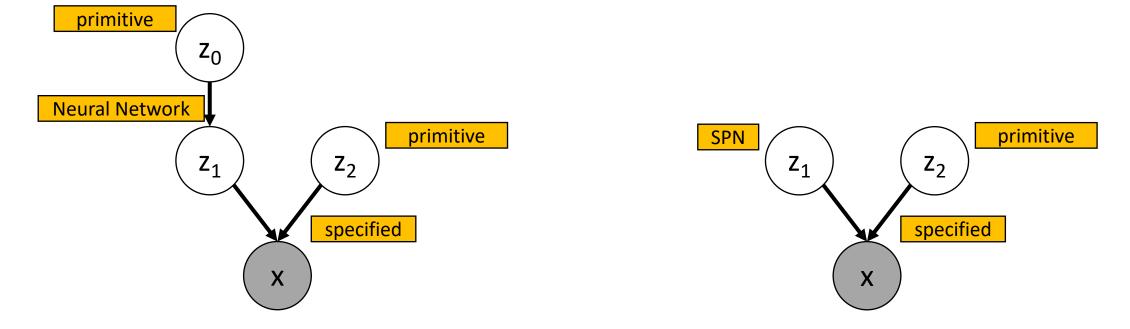
Deep Models with Tractable Components

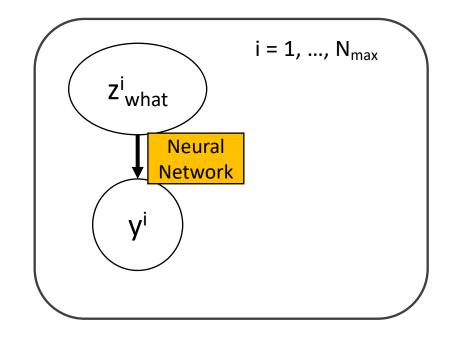
- Deep generative models are a powerful tool
- Scaling is limited by effectiveness of approximate inference
- Can we improve this by combining them with tractable models, such as Sum-Product Networks?

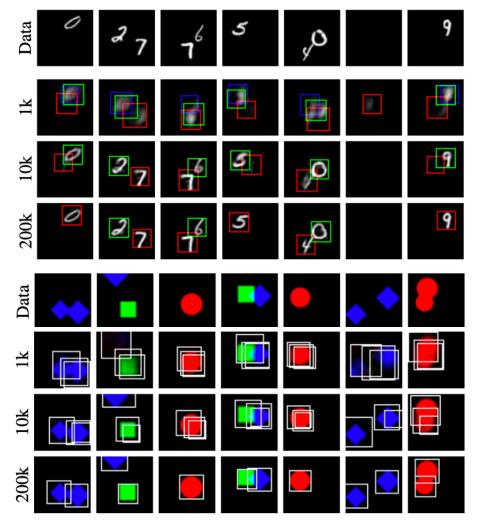


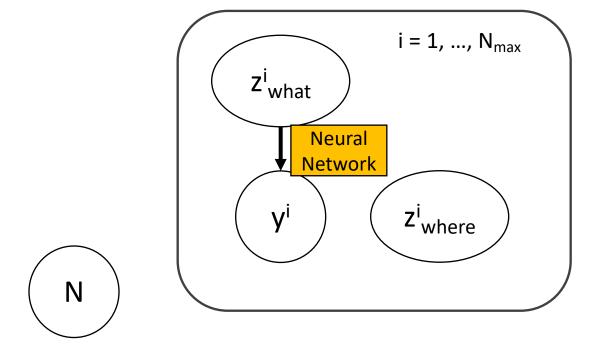
Deep Models with Tractable Components

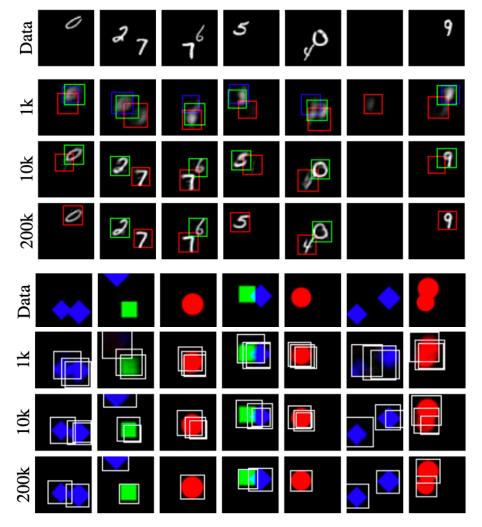
- Deep generative models are a powerful tool
- Scaling is limited by effectiveness of approximate inference
- Can we improve this by combining them with tractable models, such as Sum-Product Networks?

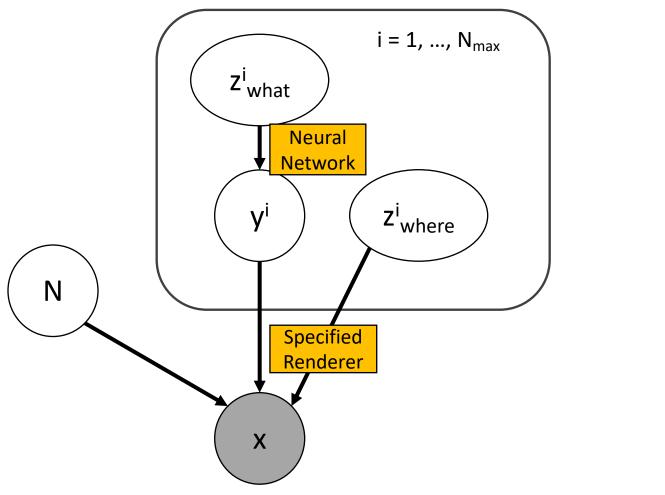


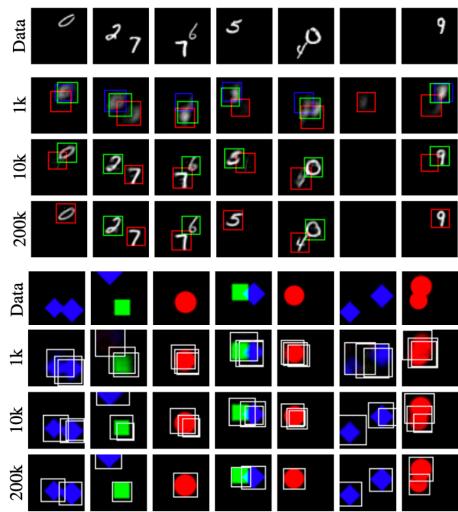


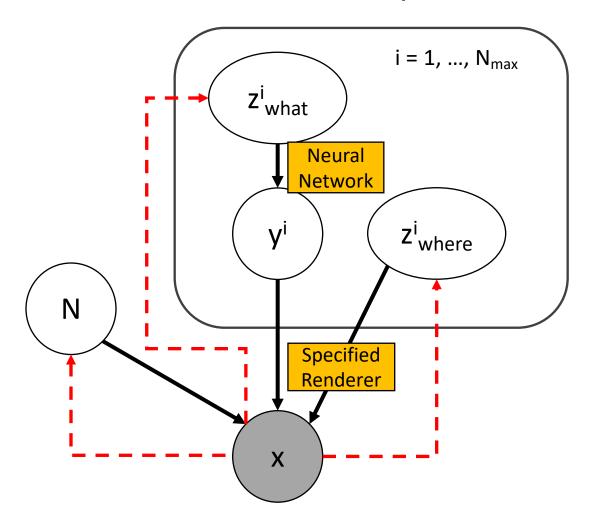


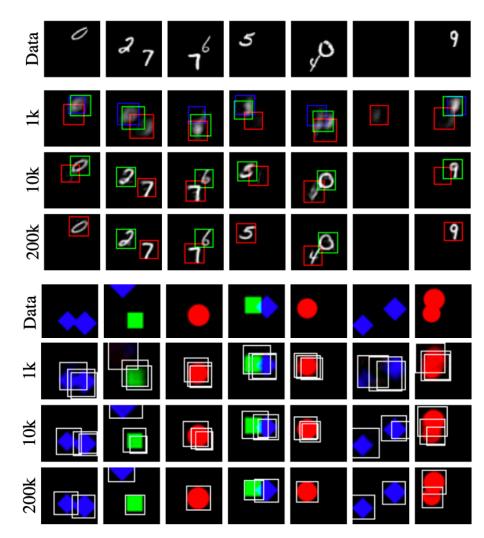








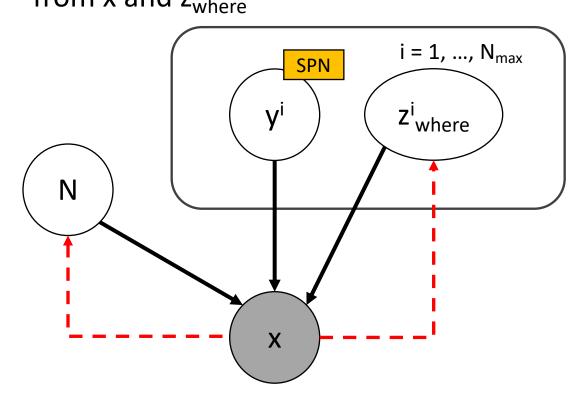


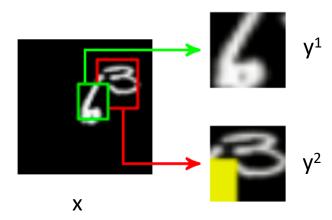


Sum-Product Attend-Infer-Repeat

Use SPN to model objects

Each pixel in y is occluded (unobserved), or can be inferred deterministically from x and $z_{\rm where}$

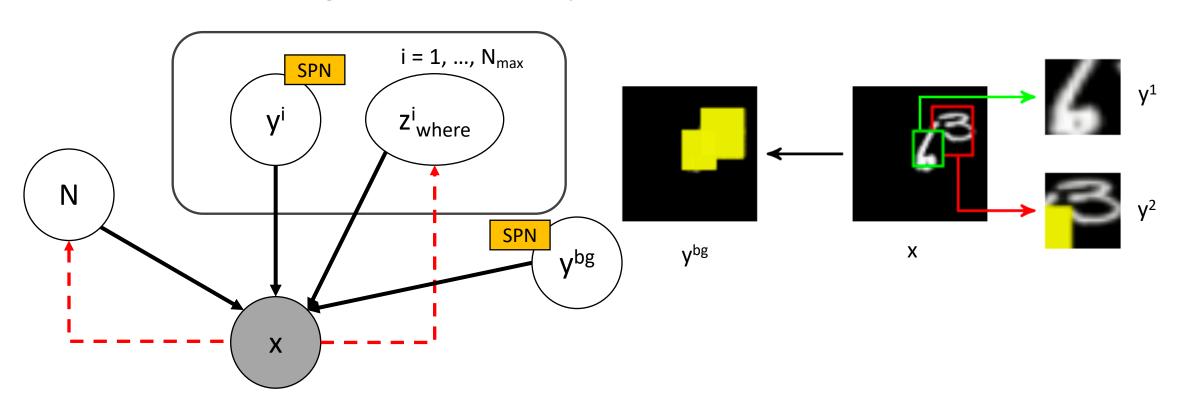




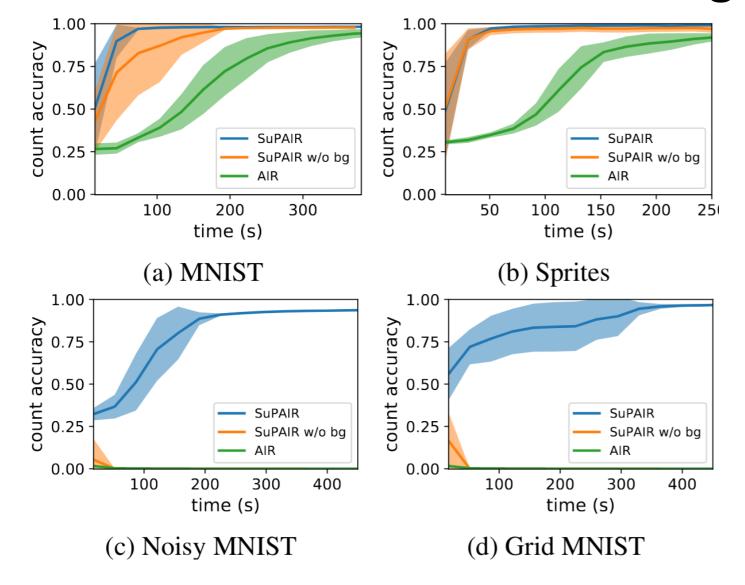
Sum-Product Attend-Infer-Repeat

Model background with another SPN

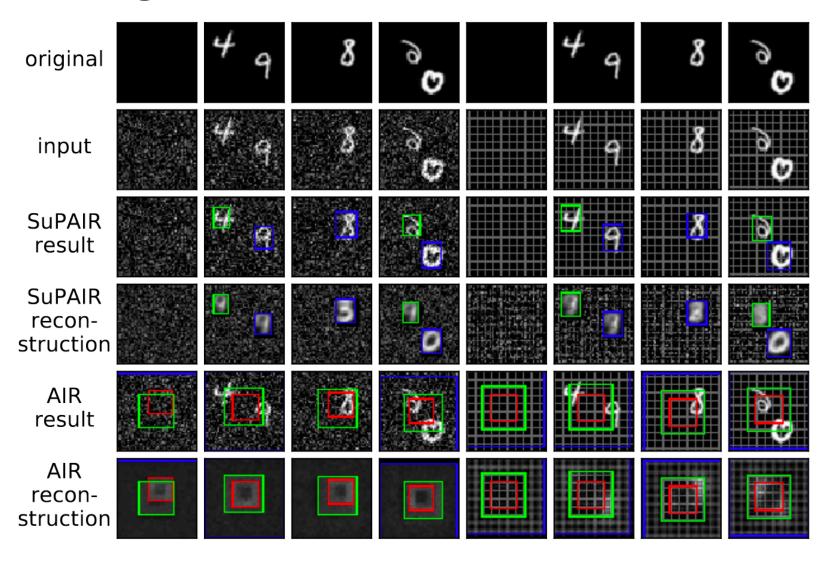
$$p(x \mid N, z_{where}) = p_{bg}(x^{bg=1}) \prod_{i=1}^{N} p_{obj}(x^{i=1})$$



Faster & More Robust Training



Background Model at Work



Thank you!

Pacific Ballroom #89

github.com/stelzner/supair

stelzner@cs.tu-darmstadt.de