Faster Attend-Infer-Repeat with Tractable Probabilistic Models

<u>Karl Stelzner</u>¹, Robert Peharz², Kristian Kersting^{1,3}

¹ Machine Learning Group, TU Darmstadt
² Machine Learning Group, University of Cambridge
³ Centre for Cognitive Science, TU Darmstadt

ICML 2019

June 13, 2019

Deep Models with Tractable Components

- Deep generative models are a powerful tool
- Scaling is limited by effectiveness of approximate inference
- Can we improve this by combining them with tractable models, such as Sum-Product Networks?

Deep Models with Tractable Components

- Deep generative models are a powerful tool
- Scaling is limited by effectiveness of approximate inference
- Can we improve this by combining them with tractable models, such as Sum-Product Networks?

Deep Models with Tractable Components

- Deep generative models are a powerful tool
- Scaling is limited by effectiveness of approximate inference
- Can we improve this by combining them with tractable models, such as Sum-Product Networks?

Sum-Product Attend-Infer-Repeat

Use SPN to model objects

Each pixel in y is occluded (unobserved), or can be inferred deterministically from x and $z_{\rm where}$

Sum-Product Attend-Infer-Repeat

Model background with another SPN

$$p(x \mid N, z_{where}) = p_{bg}(x^{bg=1}) \prod_{i=1}^{N} p_{obj}(x^{i=1})$$

Faster & More Robust Training

Background Model at Work

Thank you!

Pacific Ballroom #89

github.com/stelzner/supair

stelzner@cs.tu-darmstadt.de