Partially Exchangeable Networks and Architectures for Learning Summary Statistics in Approximate Bayesian Computation ICML 2019

Samuel Wiqvist

Centre for Mathematical Sciences, Lund University, Sweden

Ysamuel_wiqvist

June 13, 2019

• Joint work with Pierre-Alexandre Mattei (IT University Copenhagen), Umberto Picchini (Chalmers/University of Gothenburg), and Jes Frellsen (IT University Copenhagen)

- ABC only requires that we can simulate data from our model $p(y|\theta)$, thus ABC is very generic, and can be applied for models where the likelihood is intractable;
- ABC in a nut-shell:

I Generate parameter proposals $heta^{\star}$ from the prior ho(heta);

Accept θ^* if the generated data $y^* \sim p(y|\theta^*)$ is similar to our observed data y^{obs} ; Repeat Step 1-2 for a large number of times:

• The accepted θ 's are samples from an approximation to the posterior $p(\theta|y^{obs})$.

- *Curse-of-dimensionality*: Instead of comparing y^* with y^{obs} we compare a set of summary statistics $S(y^*)$ and $S(y^{obs})$;
- The main focus of our work is how to automatically learn summary statistics $S(\cdot)$ that are informative for θ .

- ABC only requires that we can simulate data from our model $p(y|\theta)$, thus ABC is very generic, and can be applied for models where the likelihood is intractable;
- ABC in a nut-shell:
 - **(**) Generate parameter proposals θ^* from the prior $p(\theta)$;
 - 2 Accept θ^* if the generated data $y^* \sim p(y|\theta^*)$ is similar to our observed data y^{obs} ;
 - Seperat Step 1-2 for a large number of times;
 - **③** The accepted θ 's are samples from an approximation to the posterior $p(\theta|y^{obs})$.
- *Curse-of-dimensionality*: Instead of comparing y^* with y^{obs} we compare a set of summary statistics $S(y^*)$ and $S(y^{obs})$;
- The main focus of our work is how to automatically learn summary statistics $S(\cdot)$ that are informative for θ .

- ABC only requires that we can simulate data from our model $p(y|\theta)$, thus ABC is very generic, and can be applied for models where the likelihood is intractable;
- ABC in a nut-shell:
 - **(**) Generate parameter proposals θ^* from the prior $p(\theta)$;
 - 2 Accept θ^* if the generated data $y^* \sim p(y|\theta^*)$ is similar to our observed data y^{obs} ;
 - Seperat Step 1-2 for a large number of times;
 - **(3)** The accepted θ 's are samples from an approximation to the posterior $p(\theta|y^{\text{obs}})$.
- Curse-of-dimensionality: Instead of comparing y^* with y^{obs} we compare a set of summary statistics $S(y^*)$ and $S(y^{obs})$;
- The main focus of our work is how to automatically learn summary statistics $S(\cdot)$ that are informative for θ .

- ABC only requires that we can simulate data from our model $p(y|\theta)$, thus ABC is very generic, and can be applied for models where the likelihood is intractable;
- ABC in a nut-shell:
 - **(**) Generate parameter proposals θ^* from the prior $p(\theta)$;
 - 2 Accept θ^* if the generated data $y^* \sim p(y|\theta^*)$ is similar to our observed data y^{obs} ;
 - Seperat Step 1-2 for a large number of times;
 - **③** The accepted θ 's are samples from an approximation to the posterior $p(\theta|y^{\text{obs}})$.
- Curse-of-dimensionality: Instead of comparing y^* with y^{obs} we compare a set of summary statistics $S(y^*)$ and $S(y^{obs})$;
- The main focus of our work is how to automatically learn summary statistics $S(\cdot)$ that are informative for θ .

- The problem of selecting informative summary statistics is the main challenge when applying ABC in practice;
- Usually, summary statistics are ad-hoc and "handpicked" out of subject-domain expertise;
- In they show that the best summary statistics (in terms of quadratic loss for θ) is the posterior mean E(θ|y);
- Deep learning methods that learn the posterior mean as a summary statistic for ABC have already been considered.

- The problem of selecting informative summary statistics is the main challenge when applying ABC in practice;
- Usually, summary statistics are ad-hoc and "handpicked" out of subject-domain expertise;
- In they show that the best summary statistics (in terms of quadratic loss for θ) is the posterior mean E(θ|y);
- Deep learning methods that learn the posterior mean as a summary statistic for ABC have already been considered.

- The problem of selecting informative summary statistics is the main challenge when applying ABC in practice;
- Usually, summary statistics are ad-hoc and "handpicked" out of subject-domain expertise;
- In¹ they show that the best summary statistics (in terms of quadratic loss for θ) is the posterior mean $E(\theta|y)$;
- Deep learning methods that learn the posterior mean as a summary statistic for ABC have already been considered.

¹Paul Fearnhead and Dennis Prangle. "Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation". In: *Journal of the Royal Statistical Society:* Series B (Statistical Methodology) 74.3 (2012), pp. 419–474.

- The problem of selecting informative summary statistics is the main challenge when applying ABC in practice;
- Usually, summary statistics are ad-hoc and "handpicked" out of subject-domain expertise;
- In¹ they show that the best summary statistics (in terms of quadratic loss for θ) is the posterior mean E(θ|y);
- Deep learning methods that learn the posterior mean as a summary statistic for ABC have already been considered².

¹Paul Fearnhead and Dennis Prangle. "Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation". In: *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 74.3 (2012), pp. 419–474. ²Bai Jiang et al. "Learning summary statistic for approximate Bayesian computation via deep neural

network". In: Statistica Sinica (2017), pp. 1595-1618.

Samuel Wiqvist (Lund University)

Partially Exchangeable Networks and ABC

K = K

• We build on the earlier ideas and we want to target time series models;

 Thus, we construct a regression function y → E(θ|y) that is d-block-switch invariant, yielding following regression problem:

$$\theta^{i} = E(\theta|y^{i}) + \xi^{i} = \underbrace{\rho_{\beta_{\rho}}\left(y_{1:d}^{i}, \sum_{l=1}^{M-d} \phi_{\beta_{\phi}}(y_{l:l+d}^{i})\right)}_{\mathsf{PEN}-d} + \xi^{i}.$$

- We have a universal approximation theorem for this architecture;
- DeepSets is a special case of PEN.

- We build on the earlier ideas and we want to target time series models;
- Thus, we construct a regression function $y \mapsto E(\theta|y)$ that is *d*-block-switch invariant, yielding following regression problem:

$$\theta^{i} = E(\theta|y^{i}) + \xi^{i} = \underbrace{\rho_{\beta_{\rho}}\left(y_{1:d}^{i}, \sum_{l=1}^{M-d} \phi_{\beta_{\phi}}(y_{l:l+d}^{i})\right)}_{\mathsf{PEN}-d} + \xi^{i}.$$

- We have a universal approximation theorem for this architecture;
- DeepSets is a special case of PEN.

- We build on the earlier ideas and we want to target time series models;
- Thus, we construct a regression function $y \mapsto E(\theta|y)$ that is *d*-block-switch invariant, yielding following regression problem:

$$heta^{i} = E(heta|y^{i}) + \xi^{i} = \underbrace{\rho_{eta_{
ho}}\left(y_{1:d}^{i}, \sum_{l=1}^{M-d} \phi_{eta_{\phi}}(y_{l:l+d}^{i})
ight)}_{\mathsf{PEN}-d} + \xi^{i}.$$

- We have a universal approximation theorem for this architecture;
- DeepSets is a special case of PEN.

- We build on the earlier ideas and we want to target time series models;
- Thus, we construct a regression function y → E(θ|y) that is d-block-switch invariant, yielding following regression problem:

$$\theta^{i} = E(\theta|y^{i}) + \xi^{i} = \underbrace{\rho_{\beta_{\rho}}\left(y_{1:d}^{i}, \sum_{l=1}^{M-d} \phi_{\beta_{\phi}}(y_{l:l+d}^{i})\right)}_{\mathsf{PEN}-d} + \xi^{i}.$$

- We have a universal approximation theorem for this architecture;
- DeepSets³ is a special case of PEN.

³Manzil Zaheer et al. "Deep sets". In: Advances in Neural Information Processing Systems. 2017, pp. 3391–3401.

Samuel Wiqvist (Lund University)

Partially Exchangeable Networks and ABC

• An autoregressive time series model of order two (AR(2)) follows:

$$y_l = \theta_1 y_{l-1} + \theta_2 y_{l-2} + z_l, \qquad z_l \sim N(0, 1).$$

- The AR(2) model is a Markov model of order 2 and the requirement for PEN-d (d > 0) is therefore fulfilled;
- We use a PEN-2 network (and compare with several different other methods).

• An autoregressive time series model of order two (AR(2)) follows:

$$y_l = \theta_1 y_{l-1} + \theta_2 y_{l-2} + z_l, \qquad z_l \sim N(0, 1).$$

- The AR(2) model is a Markov model of order 2 and the requirement for PEN-d (d > 0) is therefore fulfilled;
- We use a PEN-2 network (and compare with several different other methods).

• An autoregressive time series model of order two (AR(2)) follows:

$$y_l = \theta_1 y_{l-1} + \theta_2 y_{l-2} + z_l, \qquad z_l \sim N(0, 1).$$

- The AR(2) model is a Markov model of order 2 and the requirement for PEN-d (d > 0) is therefore fulfilled;
- We use a PEN-2 network (and compare with several different other methods).

AR(2) model: Inference results with 10^6 training data points

AR(2) model: Inference results with 10^5 training data points

AR(2) model: Inference results with 10^4 training data points

AR(2) model: Inference results with 10^3 training data points

• PEN is more data efficient than the other methods;

- Does PEN work for time-series models that are not Markovian? Check out the paper/poster to find out!;
- Learning summary statistics for ABC is only one possible application for PEN.

- PEN is more data efficient than the other methods;
- Does PEN work for time-series models that are not Markovian? Check out the paper/poster to find out!;
- Learning summary statistics for ABC is only one possible application for PEN.

- PEN is more data efficient than the other methods;
- Does PEN work for time-series models that are not Markovian? Check out the paper/poster to find out!;
- Learning summary statistics for ABC is only one possible application for PEN.

Thank you for listening!

Find the paper at: tinyurl.com/pen-and-abc

Poster (today at 6:30PM): Pacific Ballroom #87

Samuel Wiqvist (Lund University)