Population Based Augmentation Efficient Learning of Augmentation Policy Schedules Daniel Ho, Eric Liang, Ion Stoica, Pieter Abbeel, Xi Chen

Efficiently learn data augmentation policies to improve neural network performance.

Data Augmentation

Most models only use basic data augmentation strategies.

Augmentation with AutoAugment

Learns operations to apply with certain probability and magnitude.

Source: AutoAugment

What's the catch?

AutoAugment is too computationally expensive to learn. Our algorithm, PBA, uses 1000x less compute.

PBA: Trained with 1 run of PBT on 15 child models

Population Based Augmentation (PBA)

PBA learns CIFAR augmentation policy in 5 GPU hours. AutoAugment learns in 5,000 GPU hours.

How is the augmentation schedule learned?

Hyperparameter search using a mix of evolutionary algorithms and random search to discover adaptative augmentation policy schedule quickly.

Source: Population Based Training

Learned Augmentation Policy Schedules

Effect of Population Based Augmentation applied to images showing stronger augmentations as training progresses.

Thank you!

Population Based Augmentation

Daniel Ho, Eric Liang, Ion Stoica, Pieter Abbeel, Xi Chen

Poster: Pacific Ballroom **#134**

Code: <u>https://github.com/arcelien/pba</u>

Contact: Daniel Ho (daniel.ho at berkeley.edu)