Learning Classifiers for Target Domain with Limited or No Labels

Pengkai Zhu, Hanxiao Wang, Venkatesh Saligrama

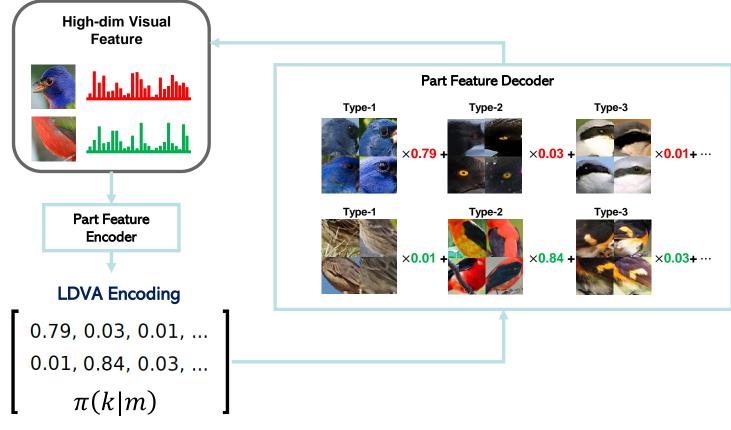
Resource-limited Classification

Task	Target Domain				
	What's new?	Example?	Label?		
Domain Adaptation	input	Yes	No		
Few-Shot Learning	class	Few	Few		
Zero-Shot Learning	class	No	No		

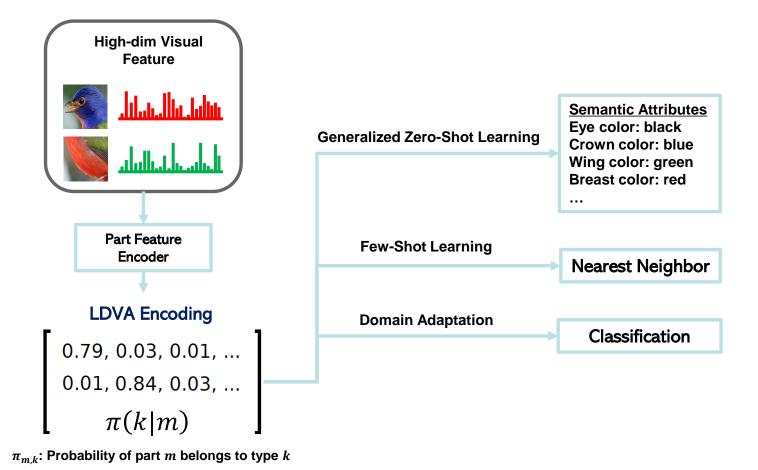
"train from scratch" is impossible

→ Adapt existing models to new environment

Goal: A universal, static representation robust to domain shift

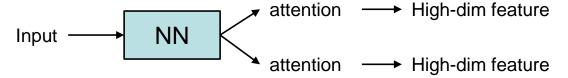


Low-Dimensional Visual Attributes (LDVA) Encoding

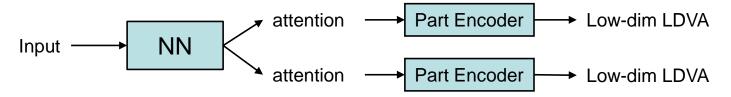

LDVA Train

 $\pi_{m,k}$: Probability of part m belongs to type k

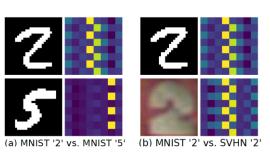
LDVA - Inference



Comparison with other methods


Vanilla DNN:

Attention Methods:


Ours:

Low-Dimensional Visual Attributes (LDVA) Encoding

- Every object is encoded into a mixture of part types
- Benefits:
 - Low-dimensional: proto-types in each part is limited
 - Compositional Uniqueness: every class is represented uniquely
 - Small intra-class variance and large inter-class variance
 - Robust to domain shift

Low-Dimensional Visual Attributes (LDVA) Encoding

- Every object is encoded into a mixture of part types
- Benefits:
 - Low-dimensional: proto-types in each part is limited
 - Compositional Uniqueness: every class is represented uniquely
 - Small intra-class variance and large inter-class variance
 - Robust to domain shift
 - Mirrors human-labeled semantic vector
 - Encode unseen class by seen part-types
 - Requires less data and feedback

Semantic Attributes
Eye color: black
Crown color: blue
Wing color: green
Breast color: red

•••

Experiments

Generalized Zero-Shot Learning

Methods	CUB			AWA2			aPY		
Methous	ts	tr	Н	ts	tr	Н	ts	tr	Н
SSE(Zhang & Saligrama, 2015)	8.5	46.9	14.4	8.1	82.5	14.8	0.2	78.9	0.4
ALE(Akata et al., 2016)	23.7	62.8	34.4	14.0	81.8	23.9	4.6	73.7	8.7
SYNC(Changpinyo et al., 2016)	11.5	70.9	19.8	10.0	90.5	18.0	7.4	66.3	13.3
DEVISE(Frome et al., 2013)	23.8	53.0	32.8	17.1	74.7	27.8	4.9	76.9	9.2
PSRZSL(Annadani & Biswas, 2018)	24.6	54.3	33.9	20.7	73.8	32.3	13.5	51.4	21.4
SP-AEN(Chen et al., 2018)	34.7	70.6	46.6	23.3	90.9	37.1	13.7	63.4	22.6
GDAN(Huang et al., 2018)	39.3	66.7	49.5	32.1	67.5	43.5	30.4	75.0	43.4
CADA-VAE(Schönfeld et al., 2018)	51.6	53.5	52.4	55.8	75.0	63.9	-	-	-
SE-GZSL(Kumar Verma et al., 2018)	41.5	53.3	46.7	58.3	68.1	62.8	_	-	-
LSD(Dong et al., 2018)	53.1	59.4	56.1	_	-	-	22.4	81.3	35.1
Ours	33.4	87.5	48.4	41.6	91.3	57.2	24.5	72.0	36.6
Ours + CS	59.2	74.6	66.0	54.6	87.7	67.3	41.1	68.0	51.2

Experiments

Few-Shot Learning

		Omn	<i>mini</i> ImageNet				
Methods	5-way Acc.		20-wa	y Acc.	5-way Acc.		
	1-shot	5-shot	1-shot	5-shot	1-shot	5-shot	
MAML	98.7	99.9	95.8	98.9	48.7	63.1	
Prototypical Nets	98.8	99.7	96.0	98.9	49.4	68.2	
Relation Nets	99.6	99.8	97.6	99.1	50.4	65.3	
TADAM	-	-	-	-	58.5	76.7	
LEO	-	-	-	-	61.7	77.6	
EA-FSL	-	-	-	-	62.6	78.4	
Ours	98.9	99.8	96.5	99.3	61.7	78.7	

Domain Adaptation

Methods	$M \rightarrow U$	$U \rightarrow M$	$S \rightarrow M$
CoGAN	91.2	89.1	-
ADDA	89.4	90.1	76.0
UNIT	96.0	93.6	90.5
CyCADA	95.6	96.5	90.4
MSTN	92.9	-	91.7
Ours (source π)	94.8	96.1	82.4
Ours (joint π)	98.8	96.8	95.2

Thank you!

#133
Pacific Ballroom

Welcome to our poster today!

