Projective geometry-aware anisotropic convolutional filters

Poster @ Pacific Ballroom #147

Renata Khasanova, Pascal Frossard, LTS4, EPFL, Switzerland

Motivation

https://www.ti.uni-bielefeld.de/html/research/equipment.html

https://www.t3.com/features/best-drone

https://www.zemax.com/blog/zemax-blog/october-2017/getting-to-the-finish-line-faster-optical-technolo

Omnidirectional camera representation

Spherical surface

Rectangular representation

Geometric distortion of equirectangular images

Geometric distortion of cube-map images

Graphs for geometry modelling

Graphs for geometry modelling

pixel — node

pixel's intensity — node's signal

Idea: adapt filters depending on image location

Example of a filter applied to equirectangular projection

Multiple directed graphs for anisotropic filters

Example of filters

Multiple directed graphs for anisotropic filters

Directed graph construction with adjacency matrix W1

Multiple directed graphs for anisotropic filters

Example of filters

Directed graphs construction

Classification: adaptation to various projective geometries

Dataset — projected MNIST

Spherical (S)

Modified spherical (MS1, MS2, MS3)

Fish-eye stereographic projection (F)

Cube-map (CM)

Classification results

Method	S	MS1	MS2	MS3	F	CM
regular graph (w=1)	69.4	64.3	64.1	62.8	71.8	40.0
regular graph (w=1/d)	69.8	63.4	64.5	62.5	70.2	40.5
GA graph (w=1/d)	70.2	63.9	62.5	62.8	72.1	44.2
ConvNets	94.2	91.3	91.2	90.5	93.4	79.4
SphereNet	94.8	_	_	_	_	_
SphericalCNN	95.2	84.5	83.3	80.9	94.9	_
Ours	96.9	95.1	95.3	94.9	95.7	84.3

Compression

Cube-map projection of SUN* dataset with 360-indoor images

*https://groups.csail.mit.edu/vision/SUN/

Decompression challenges

Visual decompression result

Original Balle et. al (2017) Ours

Summary

- Novel graph construction approach to define a filter, which adapts to the specific geometry of the wide-angle images
- Our filters are anisotropic, which permits richer representation
- Our filters can be applied to a wider class of tasks compared with standard graphbased filters
- Our approach reaches state-of-the-art performance on classification and compression tasks

Thank you!

Poster: @ Pacific Ballroom #147

Code: https://github.com/RenataKh/GAfilters

