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What is a Mesh?

3D surface representation
* Collection of connected triangular faces

Defined by a graph G = {V, A}

* V = collection of verticies
A = Adjacency Matrix
* AJi,j] != 0 if and only if there exist a face {, such that {i,j} isin {



Whv Choose Mehes?

Voxels Point cloud

Uniform mesh Adaptive mesh



Mesh Generation

How do you predict a complicated graph structure?
* You don’t

Deform a predefined mesh
« Assume initial graph structure
Predict updates to the structure
How do we make these updates?
How do we compare to know mesh ground truth?




Deform: Graph Convolutional Network

Input: - graph {V, A} - featuresoverV, {H} - weightand bias {W,b}
Apply the following operation:

Hidden layer Hidden layer
i ™y ' ™

ReLU o L ° ReLU

H = o (AHW +b) = . o o

Problem:
* Vertex smoothing
 Eachvertexin an mesh is important
 Exacerbatedin adaptive mesh



https://tkipf.github.io/graph-convolutional-networks/

Solution: Zero Neighbor GCN

Basic formulation: H'= o ( AHW + b)

Higher order : H = o/( :AH1||A2H2 ”Aka]W + b)
ON-GCN: H = o ([A°Hy||AH{||]W +b)
H' = o ([Hol|AH.|[JW + b )

* Soft middle ground between neighbor update and none

* Adaptive meshes should emerge more easily



Compare: Chamfier Distance
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Problem with naive mesh application:
» Arbitrary vertex placement
* No consideration of the faces they define




Vertex-to-Point
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Past attempt to solve issue:
 Make ground truth and predicted meshes huge
* Definitely not going to get adaptive mesh

Source Vertices  Randomly Sampled
Target Points



Solution: Sample using Reparameterization

Sample both meshes uniformly
* Given: F = {v4,v,,v3} ,U & W are Uniform(0,1)
e Sample: u~U, w~W
* Sample projected onto triangle:
r=01—-vVuwv, +\/_(1—W)U2 + Juwv,
* Select faces at rate proportional to relative surface area

Vi




Point-to-Point Loss

+meHp qll3
pPES qu a€eS

Can sample independent of vertex position
* Removes ambiguity of the target placement
* Do not have to match vertex placement

EPIP —

Face information is now take into account

Vertices can be placed optimally

Randomly Sampled Randomly Sampled
Source Points Target Points



Point-to-surface Loss
Can do even better still: compare to surfaces instead of points
Lps = Y mindist(p, f) + » min dist(q, f)
feMm WAS
pES geS

* Function dist() is the minimum distance from a point to a triangle in 3D space
 More accurate to the previous functions

Randomly Sampled Nearest
Source Points Target Points



Toy Example
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Toy Example

Comparison of Loss Functions
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Latent Loss

Train an encoder decoder system from mesh to voxel space
* Using ON-GCN networks followed by 3D convolutional network

Mesh Ground Truth Voxel Reconstruction
' b

A Encoder Decoder

5

1
-0 --m

Latent Encoding

* The latent encoding should poses all info on passed object



Latent Loss

Use the difference between latent encodings of GT and predicted objects
as a loss signal:

Mesh Ground Truth Voxel Reconstruction
N
Encoder Decoder
Latent Encodlng
|
Mesh Prediction
| Encoder Latent Loss 5
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Latent Encodlng




Mesh Generation Pipeline

Input: Image & initial mesh Output: Mesh reconstruction
1. Passimage through CNN

2. Project image features onto initial mesh as feature vectors

3. Pass through graph through multiple ON-GCN layers

4. 'Train using: PtP loss, PtS loss, latent loss

b

Image features

Feature extraction Mesh deformation



Face Splitting

Analyse local curvature of the mesh
» At each face calculate average change in normal

Every face over a given threshold is split into three

Low | -
curvature

High
curvature

Repeat the pipeline with new initial mesh
* End to end, fully differentiable

* Encourages the generation of adaptive meshes



Full Mesh Generation Pipeline

b

Low =

curvature >
/'

4 — | ON—GCN

High
curvature

Image features h, H = [hy, hy, hs, hy, X, Y, 2]

Feature extraction Mesh deformation Face splitting



Quantitative Results
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Quantitative Results

Ablation study:
Ours | GCN  Unif. Split.  No Ljagtent Lvip | Pixel2ZMesh
56.61 | 54.57 50.33 55.59 52.92 38.13




Qualitative Results




Qualitative Results




GEOMetric: Exploiting Geometric Structure for Graph-Encoded Objects

Visit our poster: 06:30 -- 09:00 PM @ Pacific Ballroom #145

Email us at: edward.smith@mail.mcgill.ca

Source code: https://github.com/EdwardSmith1884/GEOMetrics

Thank you for listening.
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