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Topic: Mesh Object Generation



What is a Mesh?

3D surface representation

• Collection of connected triangular faces 

Defined by a graph G = {V, A}
• V = collection of verticies

• A = Adjacency Matrix 

• A[i,j] != 0 if and only if there exist a face f, such that {i,j} is in f 



Why Choose Meshes? 



Mesh Generation 

How do you predict a complicated graph structure? 

• You don’t

Deform a predefined mesh 
• Assume initial graph structure 

• Predict updates to the structure

• How do we make these updates? 

• How do we compare to know mesh ground truth?



Deform: Graph Convolutional Network
Input:  - graph {V, A} - features over V, {H} - weight and bias {W,b}

Apply the following operation: 

𝐻′ = σ ( 𝐴𝐻𝑊+ 𝑏 )

Reference for figure https://tkipf.github.io/graph-convolutional-networks/:

Problem: 

• Vertex smoothing 

• Each vertex in an mesh is important

• Exacerbated in adaptive mesh  

https://tkipf.github.io/graph-convolutional-networks/


Solution: Zero Neighbor GCN 

Basic formulation: 𝐻′= σ ( 𝐴𝐻𝑊 + 𝑏 )

Higher order : 𝐻′ = σ ( 𝐴𝐻1 𝐴2𝐻2 … 𝐴𝑘𝐻𝑘 𝑊 + 𝑏

0N-GCN: 𝐻′ = σ 𝐴0𝐻0 𝐴𝐻1 𝑊 +𝑏

𝐻′ = σ 𝐻0 𝐴𝐻1 𝑊+ 𝑏

• Soft middle ground between neighbor update and none 

• Adaptive meshes should emerge more easily 



Compare: Chamfer Distance

Problem with naïve mesh application: 

• Arbitrary vertex placement

• No consideration of the faces they define



Vertex-to-Point

Past attempt to solve issue: 
• Make ground truth and predicted meshes huge

• Definitely not going to get adaptive mesh  



Solution: Sample using Reparameterization 

Sample both meshes uniformly
• Given: 𝐹 = {𝑣1, 𝑣2, 𝑣3} , U & W are Uniform(0,1)

• Sample:  𝑢 ~ 𝑈 , 𝑤~𝑊

• Sample projected onto triangle: 
𝑟 = 1 − 𝑢 𝑣1 + 𝑢 1 − 𝑤 𝑣2 + 𝑢𝑤𝑣3

• Select faces at rate proportional to relative surface area 



Point-to-Point Loss

Can sample independent of vertex position

• Removes ambiguity of the target placement

• Do not have to match vertex placement 

Face information is now take into account 

Vertices can be placed optimally  



Point-to-surface Loss 
Can do even better still: compare to surfaces instead of points

• Function dist() is the minimum distance from a point to a triangle in 3D space

• More accurate to the previous functions 



Toy Example



Toy Example



Latent Loss

Train an encoder decoder system from mesh to voxel space 

• Using 0N-GCN networks followed by 3D convolutional network 

• The latent encoding should poses all info on passed object 



Latent Loss

Use the difference between latent encodings of GT and predicted objects 
as a loss signal:



Mesh Generation Pipeline

Input: Image & initial mesh Output: Mesh reconstruction 

1. Pass image through CNN 

2. Project image features onto initial mesh  as feature vectors 

3. Pass through graph through multiple 0N-GCN layers 

4. Train using: PtP loss, PtS loss, latent loss 



Face Splitting

Analyse local curvature of the mesh 

• At each face calculate average change in normal 

Every face over a given threshold is split into three

Repeat the pipeline with new initial mesh 

• End to end, fully differentiable 

• Encourages the generation of adaptive meshes 



Full Mesh Generation Pipeline



Quantitative Results 
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Quantitative Results 

Ablation study:



Qualitative Results 



Qualitative Results 



GEOMetric: Exploiting Geometric Structure for Graph-Encoded Objects

Visit our poster: 06:30 -- 09:00 PM @ Pacific Ballroom #145

Email us at: edward.smith@mail.mcgill.ca

Source code: https://github.com/EdwardSmith1884/GEOMetrics

Thank you for listening.
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