
GEOMetrics

Exploiting Geometric Structure for Graph-Encoded Objects

Edward Smith, Scott Fujimoto, Adriana Romero, David Meger

Topic: Mesh Object Generation

What is a Mesh?

3D surface representation

• Collection of connected triangular faces

Defined by a graph G = {V, A}
• V = collection of verticies

• A = Adjacency Matrix

• A[i,j] != 0 if and only if there exist a face f, such that {i,j} is in f

Why Choose Meshes?

Mesh Generation

How do you predict a complicated graph structure?

• You don’t

Deform a predefined mesh
• Assume initial graph structure

• Predict updates to the structure

• How do we make these updates?

• How do we compare to know mesh ground truth?

Deform: Graph Convolutional Network
Input: - graph {V, A} - features over V, {H} - weight and bias {W,b}

Apply the following operation:

𝐻′ = σ (𝐴𝐻𝑊+ 𝑏)

Reference for figure https://tkipf.github.io/graph-convolutional-networks/:

Problem:

• Vertex smoothing

• Each vertex in an mesh is important

• Exacerbated in adaptive mesh

https://tkipf.github.io/graph-convolutional-networks/

Solution: Zero Neighbor GCN

Basic formulation: 𝐻′= σ (𝐴𝐻𝑊 + 𝑏)

Higher order : 𝐻′ = σ (𝐴𝐻1 𝐴2𝐻2 … 𝐴𝑘𝐻𝑘 𝑊 + 𝑏

0N-GCN: 𝐻′ = σ 𝐴0𝐻0 𝐴𝐻1 𝑊 +𝑏

𝐻′ = σ 𝐻0 𝐴𝐻1 𝑊+ 𝑏

• Soft middle ground between neighbor update and none

• Adaptive meshes should emerge more easily

Compare: Chamfer Distance

Problem with naïve mesh application:

• Arbitrary vertex placement

• No consideration of the faces they define

Vertex-to-Point

Past attempt to solve issue:
• Make ground truth and predicted meshes huge

• Definitely not going to get adaptive mesh

Solution: Sample using Reparameterization

Sample both meshes uniformly
• Given: 𝐹 = {𝑣1, 𝑣2, 𝑣3} , U & W are Uniform(0,1)

• Sample: 𝑢 ~ 𝑈 , 𝑤~𝑊

• Sample projected onto triangle:
𝑟 = 1 − 𝑢 𝑣1 + 𝑢 1 − 𝑤 𝑣2 + 𝑢𝑤𝑣3

• Select faces at rate proportional to relative surface area

Point-to-Point Loss

Can sample independent of vertex position

• Removes ambiguity of the target placement

• Do not have to match vertex placement

Face information is now take into account

Vertices can be placed optimally

Point-to-surface Loss
Can do even better still: compare to surfaces instead of points

• Function dist() is the minimum distance from a point to a triangle in 3D space

• More accurate to the previous functions

Toy Example

Toy Example

Latent Loss

Train an encoder decoder system from mesh to voxel space

• Using 0N-GCN networks followed by 3D convolutional network

• The latent encoding should poses all info on passed object

Latent Loss

Use the difference between latent encodings of GT and predicted objects
as a loss signal:

Mesh Generation Pipeline

Input: Image & initial mesh Output: Mesh reconstruction

1. Pass image through CNN

2. Project image features onto initial mesh as feature vectors

3. Pass through graph through multiple 0N-GCN layers

4. Train using: PtP loss, PtS loss, latent loss

Face Splitting

Analyse local curvature of the mesh

• At each face calculate average change in normal

Every face over a given threshold is split into three

Repeat the pipeline with new initial mesh

• End to end, fully differentiable

• Encourages the generation of adaptive meshes

Full Mesh Generation Pipeline

Quantitative Results

0

1

2

3

4

5

6

7

-5 0 5 10 15 20

N
u

m
b

e
r

o
f

ve
rt

ic
e

s
co

m
p

re
ss

io
n

 ra
te

F1 score improvement over uniform mesh [%]

Quantitative Results

Ablation study:

Qualitative Results

Qualitative Results

GEOMetric: Exploiting Geometric Structure for Graph-Encoded Objects

Visit our poster: 06:30 -- 09:00 PM @ Pacific Ballroom #145

Email us at: edward.smith@mail.mcgill.ca

Source code: https://github.com/EdwardSmith1884/GEOMetrics

Thank you for listening.

mailto:edward.smith@mail.mcgill.ca
https://github.com/EdwardSmith1884/GEOMetrics

