

GEOMetrics

Exploiting Geometric Structure for Graph-Encoded Objects

Edward Smith, Scott Fujimoto, Adriana Romero, David Meger

facebook Al Research

Topic: Mesh Object Generation

What is a Mesh?

3D surface representation

• Collection of connected triangular faces

Defined by a graph $G = \{V, A\}$

- V = collection of verticies
- A = Adjacency Matrix
 - A[i,j] != 0 if and only if there exist a face f, such that {i,j} is in f

Why Choose Meshes?

Mesh Generation

How do you predict a complicated graph structure?

• You don't

Deform a predefined mesh

- Assume initial graph structure
- Predict updates to the structure
- How do we make these updates?
- How do we compare to know mesh ground truth?

Deform: Graph Convolutional Network

Input: - graph {V, A} - features over V, {H} - weight and bias {W,b}

Apply the following operation:

$$H' = \sigma (AHW + b)$$

Problem:

- Vertex smoothing
- Each vertex in an mesh is important
- Exacerbated in adaptive mesh

Solution: Zero Neighbor GCN

Basic formulation:
$$H' = \sigma (AHW + b)$$

Higher order: $H' = \sigma ([AH_1||A^2H_2|| ... ||A^kH_k]W + b)$
ON-GCN: $H' = \sigma ([A^0H_0||AH_1||]W + b)$
 $H' = \sigma ([H_0||AH_1||]W + b)$

- Soft middle ground between neighbor update and none
- Adaptive meshes should emerge more easily

Compare: Chamfer Distance

$$\mathcal{L}_{\text{Chamfer}} = \sum_{p \in S} \min_{q \in \hat{S}} \|p - q\|_2^2 + \sum_{q \in \hat{S}} \min_{p \in S} \|p - q\|_2^2$$

Problem with naïve mesh application:

- Arbitrary vertex placement
- · No consideration of the faces they define

Vertex-to-Point

$$\mathcal{L}_{\text{Chamfer}} = \sum_{p \in S} \min_{q \in \hat{S}} \|p - q\|_2^2 + \sum_{q \in \hat{S}} \min_{p \in S} \|p - q\|_2^2$$

Past attempt to solve issue:

- Make ground truth and predicted meshes huge
- Definitely not going to get adaptive mesh

Solution: Sample using Reparameterization

Sample both meshes uniformly

- Given: $F = \{v_1, v_2, v_3\}$, U & W are Uniform(0,1)
- Sample: $u \sim U$, $w \sim W$
- Sample projected onto triangle:

$$r = (1 - \sqrt{u})v_1 + \sqrt{u}(1 - w)v_2 + \sqrt{u}wv_3$$

• Select faces at rate proportional to relative surface area

Point-to-Point Loss

$$\mathcal{L}_{PtP} = \sum_{p \in S} \min_{q \in \hat{S}} \|p - q\|_2^2 + \sum_{q \in \hat{S}} \min_{p \in S} \|p - q\|_2^2$$

Can sample independent of vertex position

• Removes ambiguity of the target placement

• Do not have to match vertex placement

Face information is now take into account Vertices can be placed optimally

Point-to-surface Loss

Can do even better still: compare to surfaces instead of points

$$L_{\text{PtS}} = \sum_{p \in S} \min_{\hat{f} \in \hat{M}} dist(p, \hat{f}) + \sum_{q \in \hat{S}} \min_{f \in M} dist(q, f)$$

- Function dist() is the minimum distance from a point to a triangle in 3D space
- More accurate to the previous functions

Toy Example

Toy Example

Latent Loss

Train an encoder decoder system from mesh to voxel space

• Using 0N-GCN networks followed by 3D convolutional network

• The latent encoding should poses all info on passed object

Latent Loss

Use the difference between latent encodings of GT and predicted objects as a loss signal:

Mesh Generation Pipeline

Input: Image & initial mesh

Output: Mesh reconstruction

- 1. Pass image through CNN
- 2. Project image features onto initial mesh as feature vectors
- 3. Pass through graph through multiple 0N-GCN layers
- 4. Train using: PtP loss, PtS loss, latent loss

Feature extraction

Mesh deformation

Face Splitting

Analyse local curvature of the mesh

• At each face calculate average change in normal

Every face over a given threshold is split into three

Repeat the pipeline with new initial mesh

- End to end, fully differentiable
- Encourages the generation of adaptive meshes

Full Mesh Generation Pipeline

Quantitative Results

Quantitative Results

Ablation study:

Ours GCN	Unif. Split.	No \mathcal{L}_{latent}	$\mathcal{L}_{ ext{VtP}}$	Pixel2Mesh
56.61 54.57	50.33	55.59	52.92	38.13

Qualitative Results

Qualitative Results

GEOMetric: Exploiting Geometric Structure for Graph-Encoded Objects

Visit our poster: 06:30 -- 09:00 PM @ Pacific Ballroom #145

Email us at: edward.smith@mail.mcgill.ca

Source code: https://github.com/EdwardSmith1884/GEOMetrics

Thank you for listening.