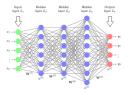
Collaborative Channel Pruning for Deep Networks

11th June 2019

Background



Source:https://orbograph.com/ deep-learning-how-will-it-change-healthcare/

Source:http://mypcsupport.ca/portable-devices/

Model compression method

- Compact network design;
- Network quantization;
- Channel or filter pruning;

Here we focus on channel pruning.

Background

Some criterion for channel pruning

- ► Magnitude-based pruning of weights.e.g. l₁-norm (Li et al.,2016) and l₂-norm (He et al.,2018a);
- Average percentage of zeros (Luo et al., 2017);
- First-order information (Molchanov et al., 2017);

Background

Some criterion for channel pruning

- ► Magnitude-based pruning of weights.e.g. l₁-norm (Li et al.,2016) and l₂-norm (He et al.,2018a);
- Average percentage of zeros (Luo et al., 2017);
- First-order information (Molchanov et al., 2017);

These measures **consider channels independently** to determine pruned channels.

Motivation

We focus on exploiting the **inter-channel dependency** to determine pruned channels.

Problems:

- Criterion to represent the inter-channel dependency?
- Effects on loss function?

We analyze the impact via second-order Taylor expansion:

$$\mathcal{L}(\boldsymbol{\beta}, \mathbf{W}) \approx \mathcal{L}(\mathbf{W}) + \mathbf{g}^{T} \mathbf{v} + \frac{1}{2} \mathbf{v}^{T} \mathbf{H} \mathbf{v},$$
 (1)

An efficient way to approximate \mathbf{H} .

- For least-square loss, $\mathbf{H} \approx \mathbf{g}^T \mathbf{g}$;
- For cross-entropy loss, $\mathbf{H} \approx \mathbf{g}^T \Sigma \mathbf{g}$;

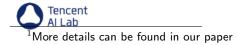
where $\Sigma = diag \left(\left(\mathbf{y} \oslash \left(f \left(\mathbf{w}, \mathbf{x} \right) \odot f \left(\mathbf{w}, \mathbf{x} \right) \right) \right) \right)$.

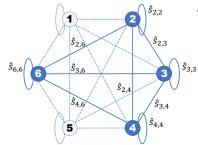
We reformulate Eq.1 to a linearly constrained binary quadratic $problem^1$:

min
$$\boldsymbol{\beta}^{T} \hat{\mathbf{S}} \boldsymbol{\beta}$$

s.t. $\mathbf{1}^{T} \boldsymbol{\beta} = \boldsymbol{p}, \ \boldsymbol{\beta} \in \{0, 1\}^{c_o}$. (2)

The pairwise correlation matrix $\boldsymbol{\hat{S}}$ reflects the inter-channel dependency.

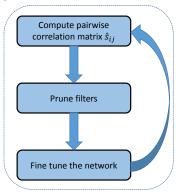




A graph perspective:

- Nodes denote channels
- Edges are assigned with the corresponding weight ŝ_{ij}.
- Find a sub-graph such the sum of included weights is minimized.

Algorithm



Algorithm 1 Collaborative Channel Pruning **Input:** Training set $\{(\mathbf{x}_n, \mathbf{y}_n)\}_{n=1}^N$ Input: Pre-trained network $\boldsymbol{\theta}_0 = \{\mathbf{W}_0^{(l)}\}_{l=1}^L$ **Output:** Channel pruned network $\boldsymbol{\theta} = \{(\boldsymbol{\beta}^{(l)}, \mathbf{W}^{(l)})\}_{l=1}^{L}$ 1: initialize $\{u_i\}$ and $\{s_{ij}\}$ for all layers 2: for n = 1, ..., N do 3: compute outputs and gradients for $(\mathbf{x}_n, \mathbf{y}_n)$ 4. update $\{u_i\}$ and $\{s_{ij}\}$ for all layers 5: end for 6: for l = 1, ..., L do compute pairwise correlation matrix $\hat{\mathbf{S}}$ 7: solve (22) to obtain binary mask $\beta^{(l)}$ 8: 9: end for 10: fine-tune the model with binary masks $\{\beta^{(l)}\}\$

Results

Table 1: Comparison on the classification accuracy drop and reduction in FLOPs of ResNet-56 on the CIFAR-10 data set.

Method	Baseline	Pruned	
	Acc.	Acc. ↓	FLOPs
Channel Pruning (He et al.,2017)	92.80%	1.00%	50.0%
AMC (He et al., 2018b)	92.80%	0.90%	50.0%
Pruning Filters (Li et al., 2016)	93.04%	-0.02%	27.6%
Soft Pruning (He et al., 2018a)	93.59%	0.24%	52.6%
DCP (Zhuang et al., 2018)	93.80%	0.31%	50.0%
DCP-Adapt (Zhuang et al., 2018)	93.80%	-0.01%	47.0%
ССР	93.50%	0.08%	52.6%
CCP-AC	95.5070	-0.19%	47.0%

Results

Table 2: Comparison on the top-1/5 classification accuracy drop, and reduction of ResNet-50 in FLOPs on the ILSVRC-12 data set.

Method	Baseline		Pruned		
	Top-1	Top-5	Top-1↓	Top-5 ↓	FLOPs
Channel Pruning	-	92.20%	-	1.40%	50.0%
ThiNet	72.88%	91.14%	1.87%	1.12%	55.6%
Soft Pruning	76.15%	92.87%	1.54%	0.81%	41.8%
DCP	76.01%	92.93%	1.06%	0.61%	55.6%
Neural Importance	-	-	0.89%	-	44.0%
CCP			0.65%	0.25%	48.8%
CCP	76.15%	92.87%	0.94%	0.45%	54.1%
CCP-AC			0.83%	0.33%	54.1%

Thanks for your attention!

