Kernel-based Reinforcement Learning in Robust Markov Decision Processes

Shiau Hong Lim, Arnaud Autef

Motivation

- Robust Markov Decision Process (MDP)
 framework
 - Tackle model mismatch and parameter uncertainty
 - Previously, for state aggregation, performance bound on $||v_R^{\pi} v^*||$ improved via robust policies:

$$O\left(\frac{1}{(1-\gamma)^2}\right) \to O\left(\frac{1}{1-\gamma}\right)$$

Contribution

1. Robust performance bound improvement on $||v_R^{\pi} - v^*||$ extended to the general kernel averager setting

$$O\left(\frac{1}{(1-\gamma)^2}\right) \to O\left(\frac{1}{1-\gamma}\right)$$

2.Formulation of a practical kernel-based robust algorithm, with empirical results on benchmark tasks

Kernel-based approach

1. MDP to solve \mathcal{M}

2.Kernel averager Φ and representative states $j \in \{1, ..., m\}$ to approximate the value function:

$$v = \Phi w$$

$$\forall i, j, 0 \le \Phi_{i,j} \le 1 \text{ and } \forall i, \sum_{j} \Phi_{i,j} = 1$$

$$\forall j, M(j) \coloneqq \{i \mid \Phi_{i,j} > 0\}$$

Kernel-based approach

- 2.Define a non-trivial robust MDP $\widetilde{\mathcal{M}}$ with states = representative states
 - 3. Obtain w^* optimal robust value in $\widetilde{\mathcal{M}}$

4. Derive π_{w^*} in \mathcal{M} greedy w.r.t w^* , with: $\Phi w^* \leq v^{\pi_{w^*}}$

Theoretical Result

Theorem:

 w^* optimal robust value in $\widetilde{\mathcal{M}}, \pi_{w^*} \mathcal{M}$ greedy policy w.r.t w^*, v^* optimal value in \mathcal{M} :

$$\left| \left| v^{\pi_{w^*}} - v^* \right| \right|_{\infty} \le \frac{2\epsilon + L_0}{1 - \gamma}$$

$$-w_{0} = \arg\min_{w} ||v^{*} - \Phi w||_{\infty}$$

$$-\epsilon = \min_{w} ||v^{*} - \Phi w||_{\infty} \rightarrow \text{Function approximator limitations}$$

$$-L_{0} = \max_{\{(j,j') \in \tilde{S} | M(j) \cap M(j') \neq \emptyset\}} |w_{0}(j) - w_{0}(j')| \rightarrow v^{*} \text{ Smoothness}$$

Practical algorithm

1. Second kernel averager Ψ to approximate the MDP model $(r, P) \rightarrow (\hat{r}, \hat{P})$ from data 2. Solve $\widetilde{\mathcal{M}}$ with the approximate robust Bellman operator: $w^{t+1}(j) \leftarrow \max_{a} \min_{\substack{||p-\widehat{\psi}_{a}(i_{j})||_{1} \leq \beta}} \langle p, r^{a} + \gamma \Phi^{a} w^{t} \rangle$

With Robustness parameter $\beta \in [0, 2]$

Experiments: Acrobot

Acrobot

Experiments: Double Pole Balancing

Double Pole Balancing

Conclusion

- Theoretical performance guarantees for robust kernel-based reinforcement learning in $O\left(\frac{1}{1-\gamma}\right)$
- Significant empirical benefits from robustness, even stronger with model mismatch (real-world settings)

Thank you! Please come to see our poster tonight

Shiau Hong Lim, Arnaud Autef

