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Policy Optimization as Stochastic Maximization

max
θ∈Rd
J (θ)

def
= Eτ∼πθ [R(τ)]

MDP def
= (S,A,P, r , ρ0, γ)

P : S × A× S → [0,1], r : S × A→ R;

Policy: πθ(·|s) : A→ [0,1], ∀s ∈ S;

Trajectory:τ def
= (s0,a0, . . . ,aH−1, sH) ∼ πθ:

ai ∼ πθ(·|si ), si+1 ∼ P(·|si ,ai ), s0 ∼ ρ0(·)
Probability and discounted cumulative reward of a trajectory:

p(τ)
def
= ρ(s0)

H−1∏
h=0

p(sh+1|sh,ah)πθ(ah|sh)

R(τ)
def
=

H−1∑
h=0

γhr(sh,ah)
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Policy Optimization with REINFORCE

max
θ∈Rd
J (θ)

def
= Eτ∼πθ [R(τ)]

Non-oblivious: p(τ) depends on θ
REINFORCE (SGD)

θt+1 := θt + ηg(θ;Sτ )

finds ‖J (θε)‖ ≤ ε (ε-FOSP) using O(1/ε4) samples of τ

g(θ;Sτ )
def
=

1
|Sτ |

∑
τ∈Sτ

R(τ)∇ log πθθ(τ), τ ∈ Sτ ∼ πθ
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Oblivious Stochastic Optimization

min
θ∈Rd
L(θ)

def
= Ez∼p(z)[L̃(θ; z)] (1)

Oblivious: p(z) is independent of θ
Stochastic Gradient Descent (SGD)

θt+1 := θt − η∇L̃(θt ;Sz)

finds ‖L(θε)‖ ≤ ε (ε-FOSP) using O(1/ε4) samples of z

L̃(θ;Sz)
def
=

1
|Sz |

∑
z∈Sz

L̃(θ; z)
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Variance Reduction
Oblivious Case

min
θRd
L(θ)

def
= Ez∼p(z)[L̃(θ; z)] (2)

Oblivious: p(z) is independent of θ

SPIDER gt := gt−1 + ∆t def
=

[
∇L̃(θt ;Sz)−∇L̃(θt−1;Sz)

]
︸ ︷︷ ︸

ESz [∆t ]=∇L(θt )−∇L(θt−1)

θt+1 := θt − η · gt , (E[gt ] = ∇L(θt ))

finds ‖L(θε)‖ ≤ ε using O(1/ε3) samples of z

L̃(θ;Sz)
def
=

1
|Sz |

∑
z∈Sz

L̃(θ; z)
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Variance Reduction
Non-oblivious Case?

max
θ∈Rd
J (θ)

def
= Eτ∼πθ [R(τ)] (3)

Non-oblivious: p(τ) depends on θ
SPIDER
gt := gt−1 + ∆t def

=
[
g(θt ;Sτ )− g(θt−1;Sτ )

]
︸ ︷︷ ︸

ESτ [∆t ] 6=∇J (θt )−∇J (θt−1)

, τ ∈ Sτ ∼ πθt

θt+1 := θt + ηgt , (E[gt ] 6= ∇J (θt ))

g(θ;Sτ )
def
=

1
|Sτ |

∑
τ∈Sτ

R(τ)∇ log πθθ(τ)
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Variance Reduction for Non-oblivious Optimization

θt+1 := θt + ηgt , (E[gt ] = ∇J (θt ))

gt := gt−1 + ∆t , E[∆t ] = ∇J (θt )−∇J (θt−1)

θa
def
= a · θt + (1− a) · θt−1, a ∈ [0,1]

∇J (θt )−∇J (θt−1) =

∫ 1

0
[∇2J (θa) · (θt − θt−1)]da

=

[∫ 1

0
∇2J (θa)da

]
· (θt − θt−1)

(Eτa [∇̃2(θa; τa)] = ∇2J (θa)) =Ea∼Uni([0,1])[∇2J (θa)] · (θt − θt−1),

=E[∇̃2(θa) · (θt − θt−1)]
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Variance Reduction
Non-oblivious Case!

max
θ∈Rd
J (θ)

def
= Eτ∼πθ [R(τ)] (4)

HAPG gt := gt−1 + ∇̃2(θt , θt−1;Sa,τ )[θt − θt−1]

θt+1 := θt + ηgt , (E[gt ] = J (θt ))

∇̃2(θt , θt−1;Sa,τ )
def
=

1
|Sa,τ |

∑
(a,τa)∈Sa,τ

∇̃2(θa; τa),

where a ∼ Uni([0,1]), τa ∼ πθa .(θa
def
= a · θt + (1− a) · θt−1)

finds ‖J (θε)‖ ≤ ε using O(1/ε3) samples of τ .
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Unbiased Policy Hessian Estimator

∇J (θ) =

∫
τ

R(τ)∇p(τ ;πθ)dτ =

∫
τ

p(τ ;πθ) · [R(τ)∇ log p(τ ;πθ)] dτ

∇2J (θ)

=

∫
τ

R(τ)∇p(τ ;πθ)[∇ log p(τ ;πθ)]> + p(τ ;πθ) · [R(τ)∇2 log p(τ ;πθ)]dτ

=

∫
τ

R(τ)p(τ ;πθ){∇ log p(τ ;πθ)[∇ log p(τ ;πθ)]> +∇2 log p(τ ;πθ)}dτ

∇̃2(θ; τ)
def
= R(τ){∇ log p(τ ;πθ)[∇ log p(τ ;πθ)]>+∇2 log p(τ ;πθ)}, τ ∼ πθ.
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Summary

First method that provably reduces the sample complexity to
achieve an ε-FOSP of the RL objective from O( 1

ε4
) to O( 1

ε3
).
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