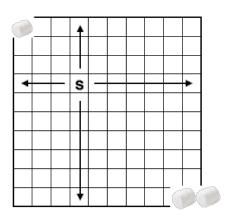
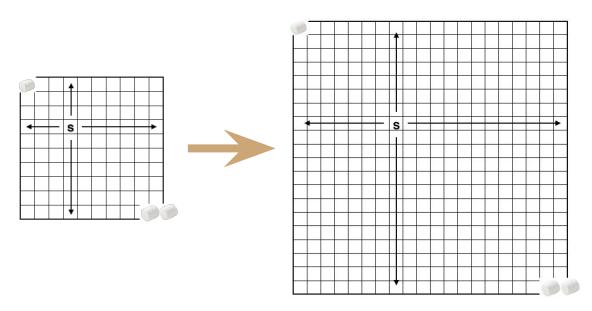
Per-Decision Option Discounting

Anna Harutyunyan, Peter Vrancx, Philippe Hamel, Ann Nowe, Doina Precup

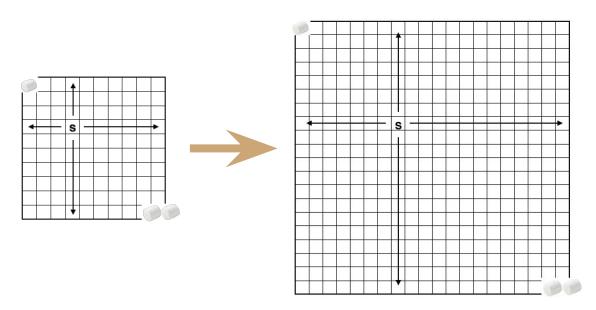
Horizon depends on discount y



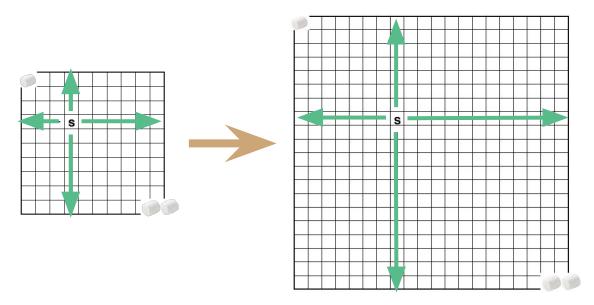
Horizon depends on discount y



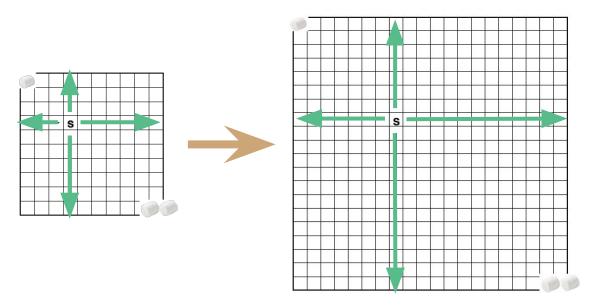
Horizon depends on discount y Larger grid requires a larger y



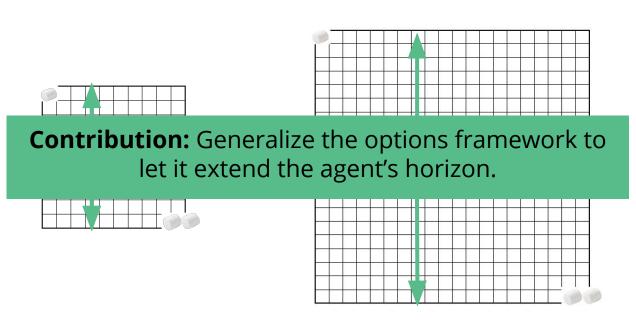
Horizon depends on discount y
Larger grid requires a larger y
Large y-s are inefficient in practice :(



Horizon depends on discount y Larger grid requires a larger y **Temporal abstraction?**



Horizon depends on discount y
Larger grid requires a larger y
Temporal abstraction? Options still tied to y!



Horizon depends on discount y
Larger grid requires a larger y
Temporal abstraction? Options still tied to y!

The Options Framework

Reward model:

$$R^o(s) \stackrel{ ext{def}}{=} \mathbb{E}_{D:s|o} \Big[\sum_{t=0}^{D-1} \gamma^t R_{t+1} \Big] \qquad P^o(s'|s) \stackrel{ ext{def}}{=} \mathbb{E}_{D:s o s'|o} \Big[\gamma^D \mathbb{I}_{S_D = s'} \Big]$$

$$P^{o}(s'|s) \stackrel{\text{def}}{=} \mathbb{E}_{D:s \to s'|o} \left[\gamma^{D} \mathbb{I}_{S_{D}=s'} \right]$$

The Options Framework

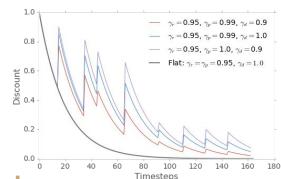
Reward model:

$$R^o(s) \stackrel{\text{def}}{=} \mathbb{E}_{D:s|o} \Big[\sum_{t=0}^{D-1} \gamma^t R_{t+1} \Big] \qquad P^o(s'|s) \stackrel{\text{def}}{=} \mathbb{E}_{D:s o s'|o} \Big[\gamma^D \Big]_{S_D = s'} \Big]$$

$$P^o(s'|s) \stackrel{\text{def}}{=} \mathbb{E}_{D:s \to s'|o} \left[\gamma^D \right]_{S_D = s'}$$

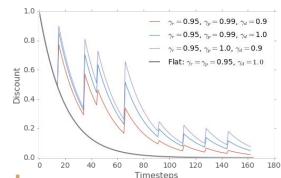
Reward model:

$$R^{o}(s) \stackrel{ ext{def}}{=} \mathbb{E}_{D:s|o} \Big[\sum_{t=0}^{D-1} \gamma^{t} R_{t+1} \Big]$$
 \downarrow
 $R^{o}(s) \stackrel{ ext{def}}{=} \mathbb{E}_{D:s|o} \Big[\sum_{t=0}^{D-1} \gamma^{t}_{r} R_{t+1} \Big]$



Reward model:

$$P^{o}(s'|s) \stackrel{\mathrm{def}}{=} \mathbb{E}_{D:s o s'|o} \begin{bmatrix} \gamma^{D} \\ \gamma^{D} \end{bmatrix}_{S_{D}=s'}$$
(2) per-decision (1) decouple
 $P^{o}(s'|s) \stackrel{\mathrm{de}}{=} \gamma_{d} \mathbb{E}_{D:s o s'|o} \begin{bmatrix} \gamma^{D}_{p} \mathbb{I}_{S_{D}=s'} \end{bmatrix}$



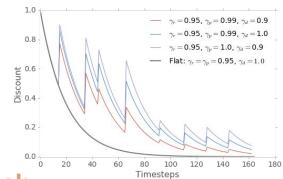
Reward model:

$$R^{o}(s) \stackrel{ ext{def}}{=} \mathbb{E}_{D:s|o} \Big[\sum_{t=0}^{D-1} \gamma^{t} R_{t+1} \Big] \ \downarrow \ R^{o}(s) \stackrel{ ext{def}}{=} \mathbb{E}_{D:s|o} \Big[\sum_{t=0}^{D-1} \gamma^{t}_{r} R_{t+1} \Big]$$

Transition model:

$$P^{o}(s'|s) \stackrel{\mathrm{def}}{=} \mathbb{E}_{D:s o s'|o} [\gamma^{D}]_{S_{D}=s'}]$$
(2) per-decision (1) decouple
 $P^{o}(s'|s) \stackrel{\mathrm{de}}{=} \gamma_{d} \mathbb{E}_{D:s o s'|o} [\gamma^{D}_{p}]_{S_{D}=s'}]$

 y_p controls how much we care about option duration (pseudo-primitive when $y_p=1$)



Reward model:

$$R^o(s) \stackrel{ ext{def}}{=} \mathbb{E}_{D:s|o} \Big[\sum_{t=0}^{D-1} \gamma^t R_{t+1} \Big]$$
 $R^o(s) \stackrel{ ext{def}}{=} \mathbb{E}_{D:s|o} \Big[\sum_{t=0}^{D-1} \gamma^t_r R_{t+1} \Big]$

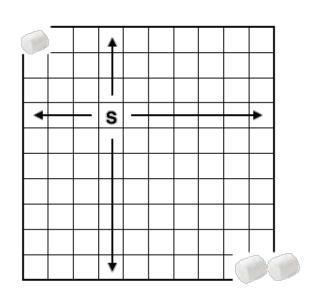
Transition model:

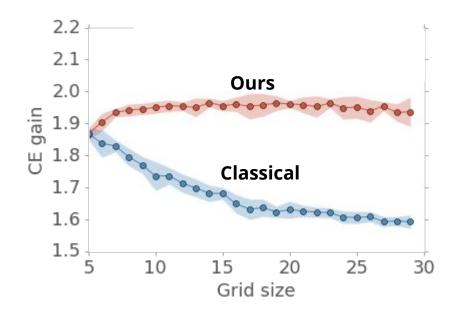
$$P^{o}(s'|s) \stackrel{\mathrm{def}}{=} \mathbb{E}_{D:s o s'|o} [\gamma^{D}]_{S_{D}=s'}]$$
(2) per-decision (1) decouple
 $P^{o}(s'|s) \stackrel{\mathrm{de}}{=} \gamma_{d} \mathbb{E}_{D:s o s'|o} [\gamma^{D}_{p}]_{S_{D}=s'}]$

 y_p controls how much we care about option duration (pseudo-primitive when $y_p=1$)

Key intuition: Insulate option time from global time

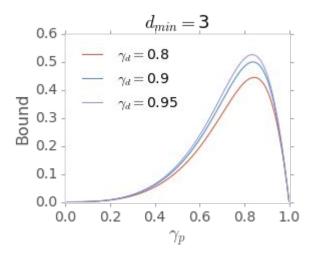
Primitive Timestep Invariance



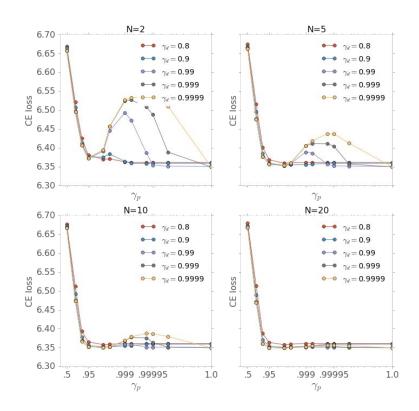


Bias-Variance Tradeoff

Analytical variance bound

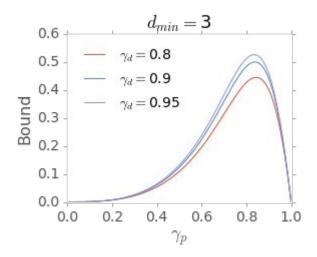


Empirical error (Four Rooms)



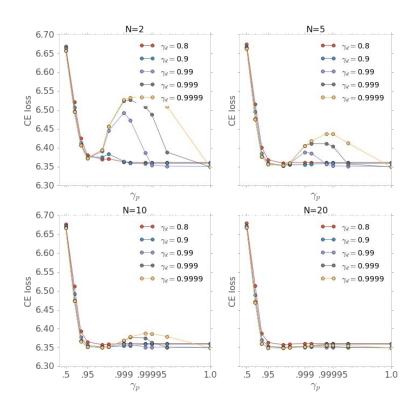
Bias-Variance Tradeoff

Analytical variance bound



Larger γ_p can induce **less** variance!

Empirical error (Four Rooms)

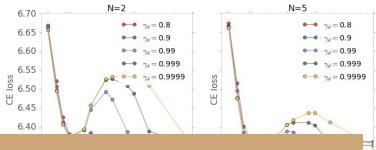


Bias-Variance Tradeoff

Analytical variance bound

$$d_{min} = 3$$

Empirical error (Four Rooms)



Thanks! More at poster #114:)

