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- There is a low dimensional structure 
underlying their behavior pattern.

- This structure can be learned 
independent of the reward.

- Instead of raw actions, agent can act in 
this space of behavior and feedback 
can be generalized to similar actions.
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Algorithm 

(a) Supervised learning of action representations.
(b) Learning internal policy with policy gradients.





Results 



Results 



Results 



Results 



Real-world Applications at Adobe

Actions = 1498 tutorials  

HelpX Photoshop

Actions = 1843 tools
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Results (Action representations)

Maze 
domain

Actual behavior of 212 
actions

Learned representations of 
212 actions



Policy decomposition



Case 1: Action representations are known 

- The internal policy acts in the space of action representations

- Any existing policy gradient algorithm can be used to improve its local 
performance, independent of the mapping function.



Case 2: Learning action representations 

- P(a|e) required to map representation to action can be learned by satisfying the 
earlier assumption: 

- We parameterize P(a|e) and P(e|s,s’) with learnable functions f and g, respectively.

- Observed transition tuples are from the required distribution.

- Parameters can be learned by minimizing the stochastic KL divergence.

- Procedure is independent of reward. 



Toy Maze:

- Agent in continuous state with n actuators.
- 2n actions. Exponentially large action space.
- Long horizon and single goal reward.

Adobe Datasets: 

- N-gram based multi-time step user behavior model from passive data.
- Rewards defined using a surrogate objective.
- Photoshop tool recommendation (1843 tools)
- HelpX tutorial recommendation (1498 tutorials)

Experiments



Advantages

- Exploits structure in space of actions. 

- Quick generalization of feedback to similar actions.

- Less parameters updated using high variance policy gradients.

- Drop-in extension for existing policy gradient algorithms.


