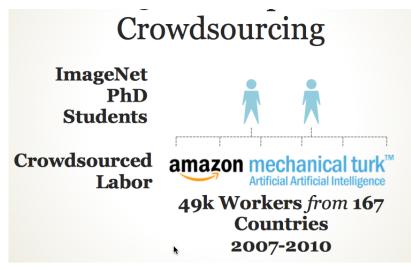
Combating Label Noise in Deep Learning using Abstention

Speaker: Sunil Thulasidasan sunil@lanl.gov

A Practical Challenge for Deep Learning

State-of-the-art models require *large amounts of clean*, *annotated data*.

Annotation is labor intensive!



Slide from Fei-Fei Li and Jia Deng

49k workers

ImageNet: 15 million labeled images; over 20,000 classes

The data that transformed Al research—and possibly the world (D. Gershgorn, quartz, magazine, 2017)

- 167 countries
- 2.5 years to complete!

Approaches to large-scale labeling

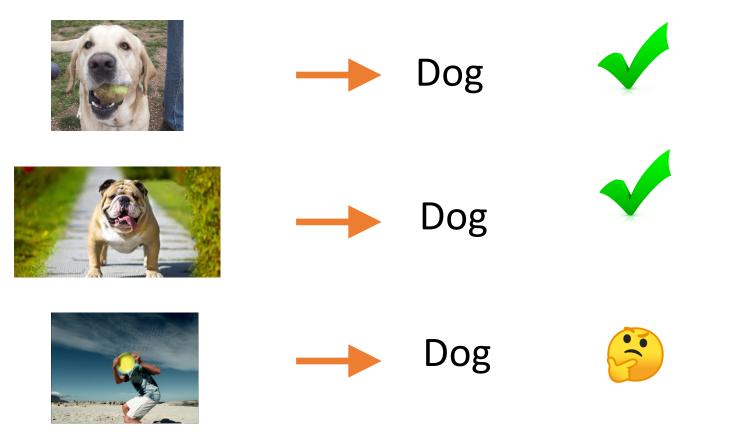
 Crowdsource at scale – labor intensive, but relatively cheap

•Use weak labels from queries, user tags and pre-trained classifiers

Approaches to large-scale labeling

•Crowdsource at scale – labor intoncivo but amazon **Both approaches can lead to** Dog Taxi significant labeling errors! Banana Use weak labels Slide credit: S Contacts Guo et al '2018 Explore / Tags / ismir2007 queries, user tags and lore Flickr Through Tags beach birthda pre-trained classifiers vacation water wedding

 Label noise is an inconsistent mapping from features X to labels Y



The Deep Abstaining Classifier (DAC)

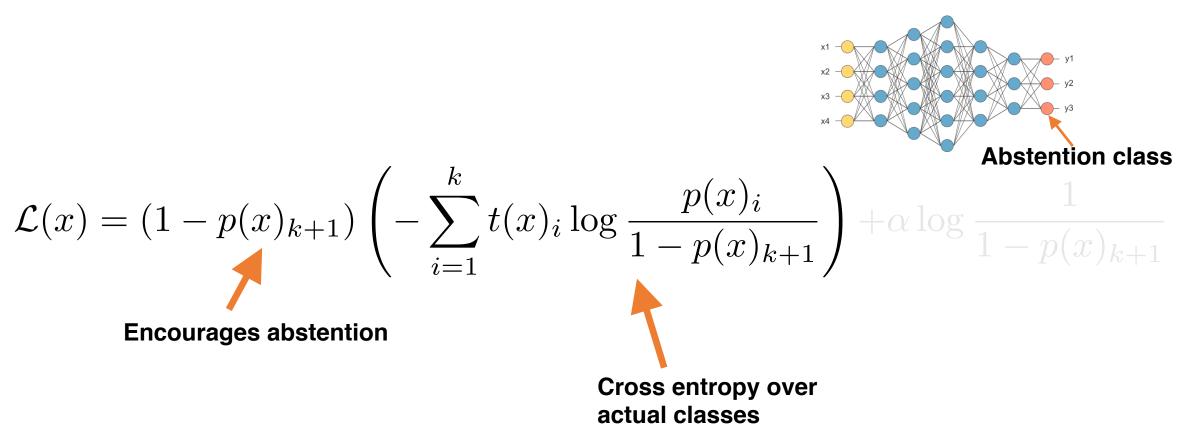
Approach: Use learning difficulty on incorrectly labeled or confusing samples to defer on learning -- *"abstain"* -- till correct mapping is learned.

Training a Deep Abstaining Classifier

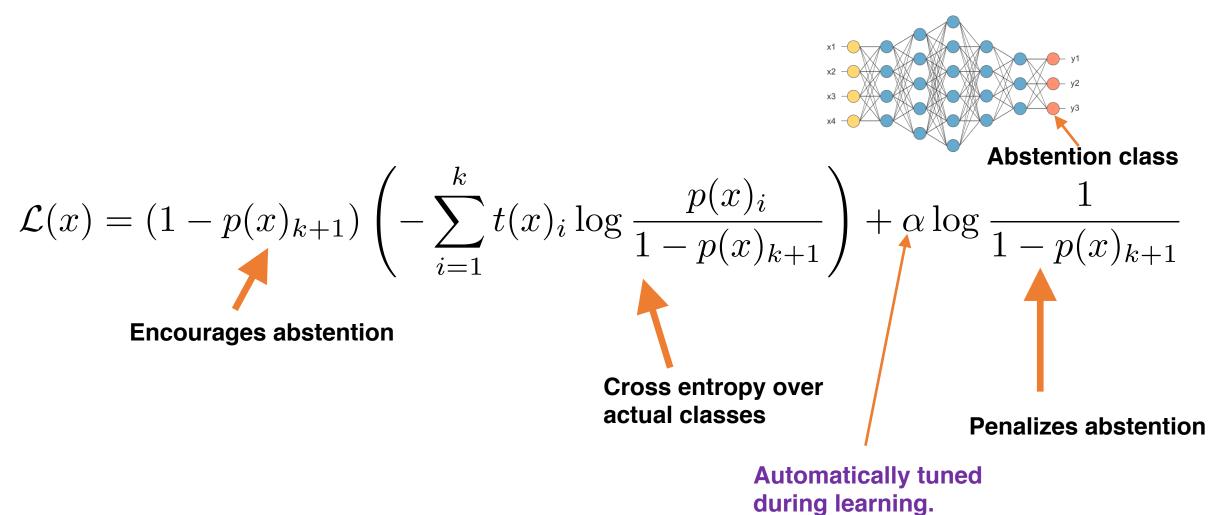
$$\mathcal{L}(x) = (1 - p(x)_{k+1}) \left(-\sum_{i=1}^{k} t(x)_i \log \frac{p(x)_i}{1 - p(x)_{k+1}} \right) + \alpha \log \frac{1}{1 - p(x)_{k+1}}$$

Cross entropy as usual

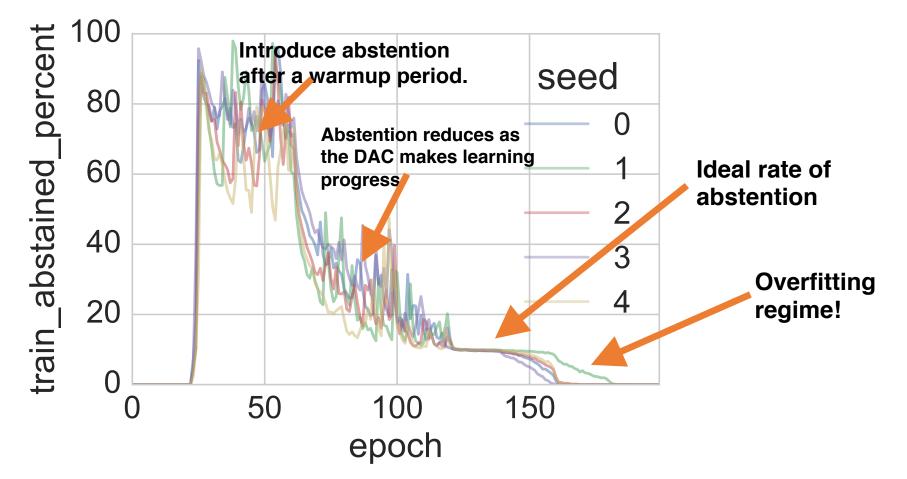
Training a Deep Abstaining Classifier



Training a Deep Abstaining Classifier



Abstention Dynamics



Abstained percent on training set vs epoch with **10% label noise**.

The DAC gives state-of-art results in label-noise experiments. 60

80

70

⁶⁰ 50 40

30

20

method

GCE

DAC

Forward

Training protocol:

CIFAR-10

60% label noise

cifar-10

90

85

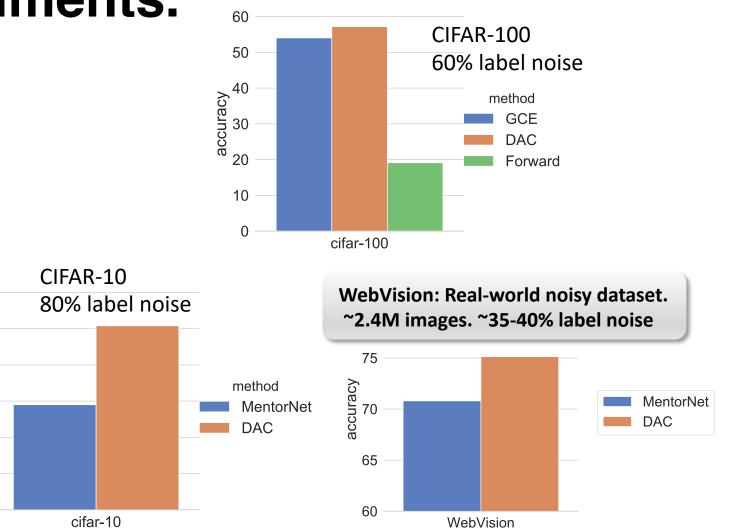
70

65

60

08 7 7

- Use DAC to identify and eliminate label noise.
- Retrain on cleaner set.



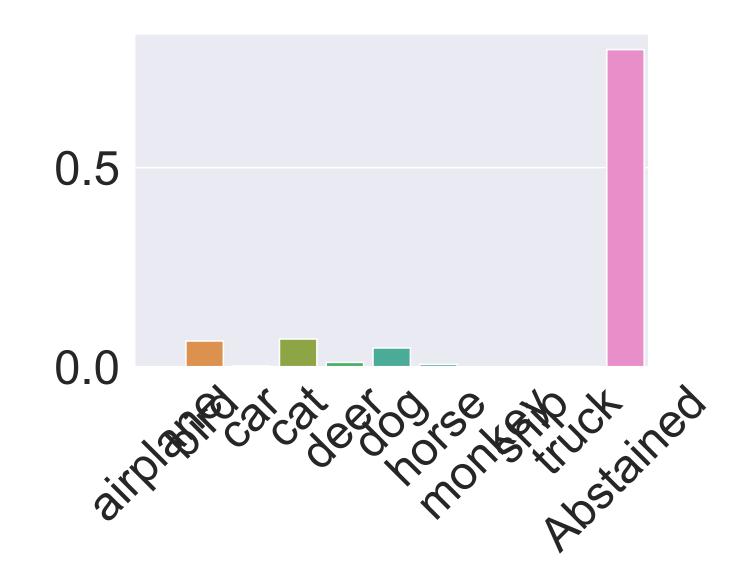
GCE: Generalized Cross-Entropy Loss (Zhang et al NIPS '18); Forward (Patrini et al, CVPR '17); MentorNet (Li et al, ICML '18)

Abstention in the presence of Systematic Label Noise: The Random Monkeys Experiment

All the monkey labels in the training set (STL-10) are randomized.

Can the DAC learn that images containing monkey features have unreliable labels and abstain on monkeys in the *test set?*

Random Monkeys: DAC Predictions on ^{sunil@lanl.gov} Monkey Images



The DAC abstains on most of the monkeys in the test set!

Image Blurring

Blur a subset (20%) of the images in the training set and randomize labels

Will the DAC learn to abstain on blurred images in the test set?

DAC Behavior on Blurred Images

100

80

60

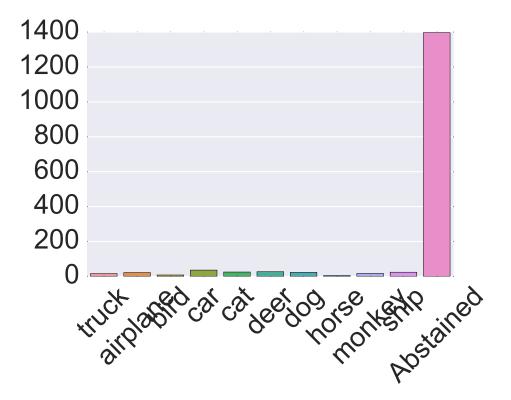
40

20

 $\mathbf{0}$

0

Validation Accuracy



DAC abstains on most of the blurred images in the test set

For DAC, validation accuracy is calculated on non-abstained samples.

50

type

DAC

100

epoch

Baseline DNN

150

Conclusions

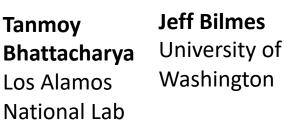
• Abstention training is an effective way to clean label noise in a deep learning pipeline.

- Abstention can also be used as a representation learner for label noise.
 - Especially useful for interpretability in "don'tknow" decision situations.

Code available at https://github.com/thulas/dac-label-noise

Joint work with.....

Tue Jun 11th 06:30 -- 09:00 PM @ Pacific Ballroom **#9**



Jamal Mohd-Yusof Los Alamos National Lab

Point of Contact: Sunil Thulasidasan (sunil@lanl.gov)