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• Advances in graph convolutional neural networks.

• Generalizing convolution operation to graphs.


• Growing interest in graph pooling methods.


• Graph pooling methods that can learn hierarchical representations of graphs.
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• Task: Graph classification.


• Key Idea: Utilize GNNs as a graph pooling module.



Related Work

• Global pooling methods: use summation or neural networks to pool all the 
representations of nodes in each layer (Set2Set[1] and SortPool[2]).


• Hierarchical pooling methods: obtain intermediate graphs (adjacency, features) and 
pass them to the next layer (DiffPool[3] and gPool[4]).
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Self-Attention Graph Pooling

Z = σ(GNN(X, A)) idx = top-rank(Z, ⌈kN⌉), Zmask = Zidx

X′� = Xidx,:, Xout = X′� ⊙ Zmask, Aout = Aidx,idx
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Evaluation

• Graph benchmark datasets.


• the same early stopping criterion and hyper-parameter selection strategy for a fair 
comparison


• 20 random seeds to split each dataset.


• 10-fold cross validation for evaluations (a total of 200 testing results for each 
evaluation).


• pytorch_geometric[1] for implementation.

[1]: Fey, M. and Lenssen, J. E. Fast graph representation learning with PyTorch Geometric. In ICLR Workshop on Repre- sentation Learning on Graphs and Manifolds, 2019. 




Results

D&D PROTEINS NCI1 NCI109 FRANKENSTEIN

Set2Set 71.27±0.84 66.06±1.66 68.55±1.92 69.78±1.16 61.92±0.73

SortPool 72.53±1.19 66.72±3.56 73.82±0.96 74.02±1.18 60.61±0.77

SAGPool 76.19±0.944 70.04±1.47 74.18±1.20 74.06±0.78 62.57±0.60

DiffPool 66.95±2.41 68.20±2.02 62.32±1.90 61.98±1.98 60.60±1.62

gPool 75.01±0.86 71.10±0.90 67.02±2.25 66.12±1.60 61.46±0.84

SAGPool 76.45±0.97 71.86±0.97 67.45±1.11 67.86±1.41 61.73±0.76
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• Additional details and discussion at the poster (Pacific Ballroom #8).

http://github.com/inyeoplee77/SAGPool

