## Self-Attention Graph Pooling Paper ID:2233 Project page: <u>github.com/inyeoplee77/SAGPool</u>





Junhyun Lee<sup>†</sup>

**†**Joint-first authors



Inyeop Lee<sup>†</sup>



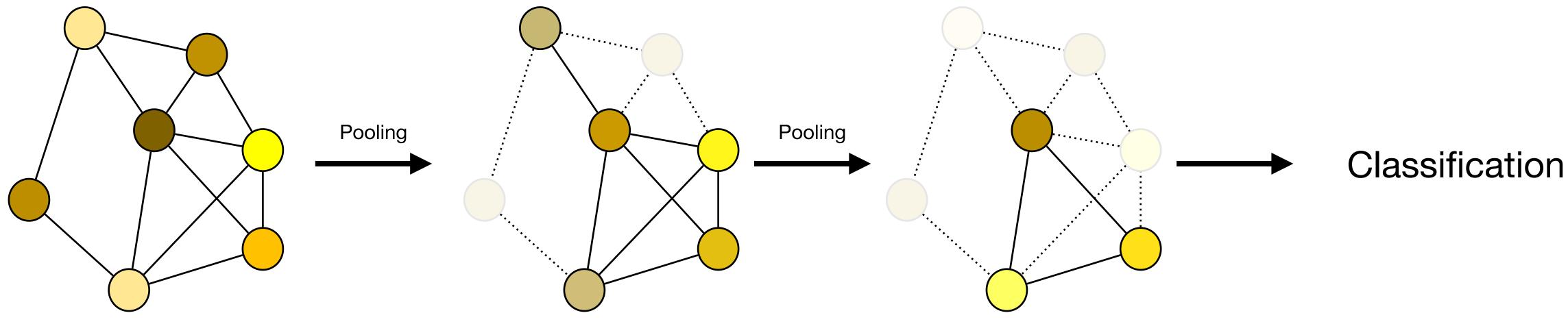
Jaewoo Kang

# **Research background &** Motivation

- Advances in graph convolutional neural networks.
- Generalizing convolution operation to graphs.
- Growing interest in graph pooling methods.
- Graph pooling methods that can learn hierarchical representations of graphs.



• Key Idea: Utilize GNNs as a graph pooling module.



### Goal

### **Related Work**

- Global pooling methods: use summation or neural networks to pool all the representations of nodes in each layer (Set2Set<sup>[1]</sup> and SortPool<sup>[2]</sup>).
- pass them to the next layer (DiffPool<sup>[3]</sup> and gPool<sup>[4]</sup>).

[1]: Vinyals, O., Bengio, S., and Kudlur, M. Order mat-ters: Sequence to sequence for sets. arXiv preprint arXiv:1511.06391, 2015. [2]:Zhang, M., Cui, Z., Neumann, M., and Chen, Y. An end-to- end deep learning architecture for graph classification. In Proceedings of AAAI Conference on Artificial Inteligence, 2018b. [3]:Ying, R., You, J., Morris, C., Ren, X., Hamilton, W. L., and Leskovec, J. Hierarchical graph representation learning with differentiable pooling. CoRR, abs/1806.08804, 2018. [4]:Gao, H. and Ji, S. Graph u-net. In Proceedings of the 36th International Conference on Machine Learning (ICML), 2019.

• Hierarchical pooling methods: obtain intermediate graphs (adjacency, features) and



# Self-Attention Graph Pooling

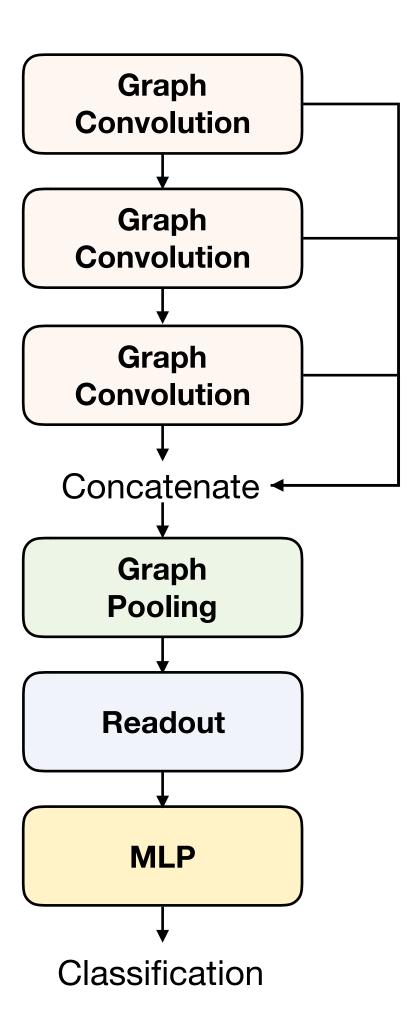


### $Z = \sigma(\mathbf{GNN}(X, A)) \quad \mathbf{idx} = \mathbf{top-rank}(Z, \lceil kN \rceil), \quad Z_{mask} = Z_{\mathbf{idx}}$

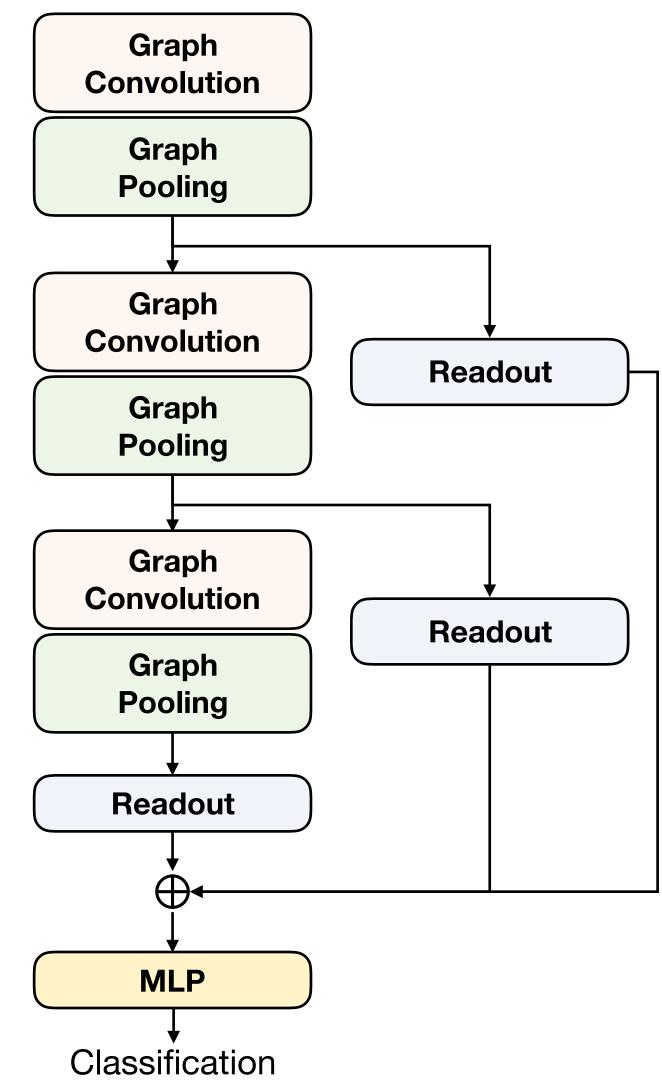
 $X' = X_{idx.}, X_{out} = X' \odot Z_{mask}, A_{out} = A_{idx,idx}$ 

### Evaluation

#### Global pooling methods



#### Hierarchical pooling methods



- Graph benchmark datasets.
- comparison
- 20 random seeds to split each dataset.
- 10-fold cross validation for evaluations (a total of 200 testing results for each evaluation).
- pytorch\_geometric<sup>[1]</sup> for implementation.

[1]: Fey, M. and Lenssen, J. E. Fast graph representation learning with PyTorch Geometric. In ICLR Workshop on Repre-sentation Learning on Graphs and Manifolds, 2019.

### Evaluation

• the same early stopping criterion and hyper-parameter selection strategy for a fair

### Results

|          | D&D                 | PROTEINS           | NCI1               | NCI109             | FRANKENSTEIN       |
|----------|---------------------|--------------------|--------------------|--------------------|--------------------|
| Set2Set  | 71.27±0.84          | 66.06±1.66         | 68.55±1.92         | 69.78±1.16         | 61.92±0.73         |
| SortPool | 72.53±1.19          | 66.72±3.56         | 73.82±0.96         | 74.02±1.18         | 60.61±0.77         |
| SAGPool  | <b>76.19</b> ±0.944 | <b>70.04</b> ±1.47 | <b>74.18</b> ±1.20 | <b>74.06</b> ±0.78 | <b>62.57</b> ±0.60 |
| DiffPool | 66.95±2.41          | 68.20±2.02         | 62.32±1.90         | 61.98±1.98         | 60.60±1.62         |
| gPool    | 75.01±0.86          | 71.10±0.90         | 67.02±2.25         | 66.12±1.60         | 61.46±0.84         |
| SAGPool  | <b>76.45</b> ±0.97  | <b>71.86</b> ±0.97 | <b>67.45</b> ±1.11 | <b>67.86</b> ±1.41 | <b>61.73</b> ±0.76 |

### Self-Attention Graph Pooling Paper ID:2233 Project page: <u>github.com/inyeoplee77/SAGPool</u>

Additional details and discussion at the poster (Pacific Ballroom #8).

