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Semi-supervised Node Classification

• Given a graph 𝐺 = (𝑉, 𝐸, 𝐱()
• 𝑉 = 𝑉*⋃𝑉,: nodes
• 𝐸: edges
• 𝐱(: node features

• Give some labeled nodes 𝑉*, we want to infer the labels of the rest of 
nodes 𝑉,
• Many other tasks on graphs can be formulated as node classification
• E.g., link classification
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Related Work: Statistical Relational Learning

• Model the joint distribution of the node labels given the node 
features, i.e.,  𝑝(𝐲(|𝐱(), with conditional random fields

• Pros
• Capable of modeling the dependency between the node labels

• Cons
• Some manually defined potential functions
• Limited model capacity
• Difficult inference due to the complicated graph structures  

GMNN: Graph Markov Neural Networks

relational data is an important direction in machine learn-
ing with various applications, such as object classification
and link prediction. In this paper, we focus on a fundamen-
tal problem, semi-supervised object classification, as many
other applications can be reformulated as this problem.

Formally, the problem of semi-supervised object classifi-
cation considers a graph G = (V,E,xV ), in which V is a
set of objects, E is a set of edges between objects, and xV

stands for the attributes of all the objects. The edges in E

may have multiple types, which represent different relations
among objects. In this paper, for simplicity, we assume all
edges belong to the same type. Given the labels yL of a few
labeled objects L ⇢ V , the goal is to predict the labels yU

for the remaining unlabeled objects U = V \ L.

This problem has been extensively studied in the literature
of both statistical relation learning (SRL) and graph neural
networks (GNN). Essentially, both types of methods aim to
model the distribution of object labels conditioned on the
object attributes and the graph structure, i.e., p(yV |xV , E).
Next, we introduce the general idea of both methods. For
notation simplicity, we omit E in the following formulas.

3.2. Statistical Relational Learning

Most SRL methods model p(yV |xV ) with conditional ran-
dom fields, which employ the following formulation:

p(yV |xV ) =
1

Z(xV )

Y

(i,j)2E

 i,j(yi,yj ,xV ). (1)

Here, (i, j) is an edge in the graph G, and  i,j(yi,yj ,xV )
is the potential score defined on the edge. Typically, the
potential score is computed as a linear combination of some
hand-crafted feature functions, such as logical formulae.

With this formulation, predicting the labels for unlabeled
objects becomes an inference problem, i.e., inferring
the posterior label distribution of the unlabeled objects
p(yU |yL,xV ). Exact inference is usually infeasible due to
the complicated structures between object labels. Therefore,
some approximation inference methods are often utilized,
such as loopy belief propagation (Murphy et al., 1999).

3.3. Graph Neural Network

Different from SRL methods, GNN methods simply ignore
the dependency of object labels and they focus on learning
effective object representations for label prediction. Specif-
ically, the joint distribution of labels is fully factorized as:

p(yV |xV ) =
Y

n2V

p(yn|xV ). (2)

Based on the formulation, GNNs will infer the label distri-
bution p(yn|xV ) for each object n independently. For each
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Figure 1. Framework overview. Yellow and grey squares are la-
beled and unlabeled objects. Grey/white grids are attributes. His-
tograms are label distributions of objects. Orange triple circles are
object representations. GMNN is trained by alternating between
an E-step and an M-step. See Sec. 4.4 for the detailed explanation.

object n, GNNs predict the label in the following way:

h = g(xV , E) p(yn|xV ) = Cat(yn|softmax(Whn)),

where h 2 R|V |⇥d is the representations of all the objects,
and hn 2 Rd is the representation of object n. W 2 RK⇥d

is a linear transformation matrix, with d as the representa-
tion dimension and K as the number of label classes. Cat
stands for categorical distributions. Basically, GNNs focus
on learning a useful representation hn for each object n.
Specifically, each hn is initialized as the attribute repre-
sentation of object n. Then each hn is iteratively updated
according to its current value and the representations of n’s
neighbors, i.e., hNB(n). For the updating function, the graph
convolutional layer (GC) (Kipf & Welling, 2017) and the
graph attention layer (GAT) (Veličković et al., 2018) can be
used, or in general the neural message passing layer (Gilmer
et al., 2017) can be utilized. After multiple layers of update,
the final object representations are fed into a linear softmax
classifier for label prediction. The whole framework can be
trained in an end-to-end fashion with a few labeled objects.

4. GMNN: Graph Markov Neural Network

In this section, we introduce our approach called the Graph
Markov Neural Network (GMNN) for semi-supervised ob-
ject classification. The goal of GMNN is to combine the
advantages of both the statistical relational learning methods
and graph neural networks, so that we can learn effective ob-
jective representations for predicting object labels, as well as
model the dependency between object labels. Specifically,
GMNN models the joint distribution of object labels condi-
tioned on object attributes p(yV |xV ) by using a conditional
random field, which is optimized with a pseudolikelihood
variational EM framework. In the E-step, a graph neural
network is used to learn object representations for predicting
the object labels. In the M-step, another graph neural net-
work is employed to model the local dependency of object
labels. Next, we introduce the details of the approach.



Related Work: Graph Neural Networks

• Learn effective node representations by non-linear feature 
propagations
• Graph convolutional Networks (Kipf et al. 2016)
• Graph attention networks (Veličković et al. 2017)
• Neural message passing (Gilmer et al. 2017)

• Pros
• Learning effective node representations 
• High model compacity through multiple non-linear graph convolutional layers

• Cons
• Ignoring the dependency between node labels



GMNN: Graph Markov Neural Networks

• Towards combining statistical relational learning and graph neural
networks
• Learning effective node representations
• Modeling the label dependencies of nodes

• Model the joint distribution of node labels 𝐲1 conditioned on node
features 𝐱1 , i.e., 𝑝2(𝐲1|𝐱1)
• Can be effectively optimized through pseudolikelihood Variational-EM



Two Graph Neural Networks co-train with 
Each Other
• Two GNNs:
• 𝑝2: learning network, modeling the label dependency by non-linear label 

propagation
• 𝑞4: inference network, learning the node representations by non-linear 

feature propagation

• 𝑞4 infers the labels of unlabeled nodes trained with supervision from
𝑝2 and labeled nodes
• 𝑝2 is trained with a fully labeled graph, where the unlabeled nodes

are labeled by 𝑞4



Experimental Results

GMNN: Graph Markov Neural Networks

Table 1. Dataset statistics. OC, NRL, LC represent object classification, node representation learning and link classification respectively.

Dataset Task # Nodes # Edges # Features # Classes # Training # Validation # Test

Cora OC / NRL 2,708 5,429 1,433 7 140 500 1,000
Citeseer OC / NRL 3,327 4,732 3,703 6 120 500 1,000
Pubmed OC / NRL 19,717 44,338 500 3 60 500 1,000

Bitcoin Alpha LC 3,783 24,186 3,783 2 100 500 3,221
Bitcoin OTC LC 5,881 35,592 5,881 2 100 500 5,947

Table 2. Results of object classification. [*] means the results are
taken from the corresponding papers.

Category Algorithm Cora Citeseer Pubmed

SSL LP 74.2 56.3 71.6

SRL

PRM 77.0 63.4 68.3
RMN 71.3 68.0 70.7
MLN 74.6 68.0 75.3

GNN

Planetoid * 75.7 64.7 77.2
GCN * 81.5 70.3 79.0
GAT * 83.0 72.5 79.0

GMNN
W/o Attr. in p� 83.4 73.1 81.4
With Attr. in p� 83.7 72.9 81.8

Table 3. Results of unsupervised node representation learning. [*]
means the results are taken from corresponding papers.

Category Algorithm Cora Citeseer Pubmed

GNN
DeepWalk * 67.2 43.2 65.3

DGI * 82.3 71.8 76.8

GMNN
With only q✓ . 78.1 68.0 79.3
With q✓ and p� 82.8 71.5 81.6

regression model locally for each object. This logistic re-
gression model takes the attributes of each object and also
those of its neighbors as features. Besides, we treat the la-
bels of two linked objects as a clique template, which is the
same as in Taskar et al. (2002). In RMN, a complete score
table is employed for modeling label dependency, which
maintains a potential score for every possible combination of
object labels in a clique. In MLN, we simply use a indicator
function in the potential function, and the indicator function
judges whether the linked objects in a clique have the same
label. Loop belief propagation (Murphy et al., 1999) is used
for approximation inference in RMN and MLN.

SSL Methods. For the methods of graph-based semi-
supervised classification, we choose the label propagation
method (Zhou et al., 2004) to compare with.

6.3. Parameter Settings

Object Classification. For GMNN, p� and q✓ are com-
posed of two graph convolutional layers with 16 hidden units
and the ReLU activation function (Nair & Hinton, 2010),
followed by the softmax function, as suggested in Kipf &
Welling (2017). Dropout (Srivastava et al., 2014) is applied
to the network inputs with p = 0.5. We use the RMSProp
optimizer (Tieleman & Hinton, 2012) during training, with

the initial learning rate as 0.05 and weight decay as 0.0005.
In each iteration, both networks are trained for 100 epochs.
The mean accuracy over 100 runs is reported in experiment.

Unsupervised Node Representation Learning. For
GMNN, p� and q✓ are composed of two graph convolu-
tional layers followed by a linear layer and the softmax
function. The dimension of hidden layers is set as 512 for
Cora and Citeseer, and 256 for Pubmed, which are the same
as in Veličković et al. (2019). ReLU (Nair & Hinton, 2010)
is used as the activation function. We apply dropout (Sri-
vastava et al., 2014) to the inputs of both networks with
p = 0.5. The Adam SGD optimizer (Kingma & Ba, 2014)
is used for training, with initial learning rate as 0.1 and
weight decay as 0.0005. We empirically train q✓ for 200
epoches during pre-training. Afterwards, we train both p�

and q✓ for 2 iterations, with 100 epochs for each network
per iteration. The mean accuracy over 50 runs is reported.

Link Classification. The setting of GMNN is similar as in
the object classification task, with the following differences.
The dimension of the hidden layers is set as 128. No weight
decay and dropout are used. In each iteration, both networks
are trained for 5 epochs with the Adam optimizer (Kingma
& Ba, 2014), and the initial learning rate is 0.01.

6.4. Results

1. Comparison with the Baseline Methods. The quantita-
tive results on the three tasks are presented in Tab. 2, 3, 4
respectively. For object classification, our approach GMNN
significantly outperforms all the SRL methods. The per-
formance gain is from two folds. First, during inference,
GMNN employs a GNN model, which can learn effective
object representations to improve inference. Second, during
learning, we model the local label dependency with an-
other GNN, which is more effective than the SRL methods.
GMNN is also superior to the label propagation method,
as GMNN can utilize object attributes and propagate la-
bels in a non-linear way. Compared with GCN, which
employs the same architecture as the inference network
in GMNN, GMNN significantly outperforms GCN, and the
performance gain mainly comes from the capability of mod-
eling label dependencies. Besides, GMNN also outperforms
GAT, but their performances are quite close. This is because
GAT utilizes a much more complicated architecture. Since
GAT is less efficient, we did not try it in GMNN, but we

GMNN: Graph Markov Neural Networks

Table 1. Dataset statistics. OC, NRL, LC represent object classification, node representation learning and link classification respectively.

Dataset Task # Nodes # Edges # Features # Classes # Training # Validation # Test

Cora OC / NRL 2,708 5,429 1,433 7 140 500 1,000
Citeseer OC / NRL 3,327 4,732 3,703 6 120 500 1,000
Pubmed OC / NRL 19,717 44,338 500 3 60 500 1,000

Bitcoin Alpha LC 3,783 24,186 3,783 2 100 500 3,221
Bitcoin OTC LC 5,881 35,592 5,881 2 100 500 5,947

Table 2. Results of object classification. [*] means the results are
taken from the corresponding papers.

Category Algorithm Cora Citeseer Pubmed

SSL LP 74.2 56.3 71.6

SRL

PRM 77.0 63.4 68.3
RMN 71.3 68.0 70.7
MLN 74.6 68.0 75.3

GNN

Planetoid * 75.7 64.7 77.2
GCN * 81.5 70.3 79.0
GAT * 83.0 72.5 79.0

GMNN
W/o Attr. in p� 83.4 73.1 81.4
With Attr. in p� 83.7 72.9 81.8

Table 3. Results of unsupervised node representation learning. [*]
means the results are taken from corresponding papers.

Category Algorithm Cora Citeseer Pubmed

GNN
DeepWalk * 67.2 43.2 65.3

DGI * 82.3 71.8 76.8

GMNN
With only q✓ . 78.1 68.0 79.3
With q✓ and p� 82.8 71.5 81.6

regression model locally for each object. This logistic re-
gression model takes the attributes of each object and also
those of its neighbors as features. Besides, we treat the la-
bels of two linked objects as a clique template, which is the
same as in Taskar et al. (2002). In RMN, a complete score
table is employed for modeling label dependency, which
maintains a potential score for every possible combination of
object labels in a clique. In MLN, we simply use a indicator
function in the potential function, and the indicator function
judges whether the linked objects in a clique have the same
label. Loop belief propagation (Murphy et al., 1999) is used
for approximation inference in RMN and MLN.

SSL Methods. For the methods of graph-based semi-
supervised classification, we choose the label propagation
method (Zhou et al., 2004) to compare with.

6.3. Parameter Settings

Object Classification. For GMNN, p� and q✓ are com-
posed of two graph convolutional layers with 16 hidden units
and the ReLU activation function (Nair & Hinton, 2010),
followed by the softmax function, as suggested in Kipf &
Welling (2017). Dropout (Srivastava et al., 2014) is applied
to the network inputs with p = 0.5. We use the RMSProp
optimizer (Tieleman & Hinton, 2012) during training, with

the initial learning rate as 0.05 and weight decay as 0.0005.
In each iteration, both networks are trained for 100 epochs.
The mean accuracy over 100 runs is reported in experiment.

Unsupervised Node Representation Learning. For
GMNN, p� and q✓ are composed of two graph convolu-
tional layers followed by a linear layer and the softmax
function. The dimension of hidden layers is set as 512 for
Cora and Citeseer, and 256 for Pubmed, which are the same
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anticipate the results can be further improved by using GAT,
and we leave it as future work. In addition, by incorporating
the object attributes in the learning network p�, we further
improve the performance, showing that GMNN is flexible
and also effective to use additional features in the learning
network. For link classification, we obtain similar results.

For unsupervised node representation learning, GMNN
achieves the state-of-the-art performance on the Cora and
Pubmed datasets. The reason is that it effectively models the
smoothness of the neighbor distributions for different nodes
with the p� network. Also, the performance of GMNN is
quite close to the performance in the semi-supervised setting
(Tab. 2), showing that the learned representations are quite
effective. We also compare with a variant without using
the p� network (with only q✓). In this case, we see that the
performance drops significantly, showing the importance of
using p� as a regularizer over the neighbor distributions.

Table 4. Results of link classification.
Category Algorithm Bitcoin Alpha Bitcoin OTC

SSL LP 59.68 65.58

SRL

PRM 58.59 64.37
RMN 59.56 65.59
MLN 60.87 65.62

GNN
DeepWalk 62.71 63.20

GCN 64.00 65.69

GMNN
W/o Attr. in p� 65.59 66.62
With Attr. in p� 65.86 66.83

2. Analysis of the Amortized Inference. In GMNN, we
employ amortized inference, and parameterize the posterior
label distribution by using a GNN model. In this section, we
thoroughly look into this strategy, and present some anal-
ysis in Tab. 5. Here, the variant “Non-amortized” simply
models each q✓(yn|xV ) as a categorical distribution with in-
dependent parameters, and performs fix-point iteration (i.e.,
Eq. (8)) to calculate the value. We see that the performance
of this variant is very poor on all datasets. By parameter-
izing the posterior distribution as a neural network, which
leverages the own attributes of each object for inference, the
performance (1 Linear Layer) is significantly improved, but
sill not satisfactory. With several GC layers, we are able to
incorporate the attributes from the surrounding neighbors for
each object, yielding further significant improvement. The
above observations prove the effectiveness of our strategy
for inferring the posterior label distributions.

Table 5. Analysis of amortized inference.
Architecture Cora Citeseer Pubmed

Non-amortized 45.3 28.1 42.2
1 Linear Layer 55.8 57.5 69.8

1 GC Layer 72.9 67.6 71.8
2 GC Layers 83.4 73.1 81.4
3 GC Layers 82.0 70.6 80.7

3. Ablation Study of the Learning Network. In GMNN,
the conditional distribution p�(yn|yNB(n),xV ) is parameter-
ized as another GNN, which essentially models the local
label dependency. In this section, we compare different
architectures of the GNN on the object classification task,
and the results are presented in Tab. 6. Here, the variant “1
Mean Pooling Layer” computes the distribution of yn as the
linear combination of {yk}k2NB(n). This variant is similar to
the label propagation methods, and its performance is quite
competitive. However, the weights of different neighbors
during propagation are fixed. By parameterizing the con-
ditional distribution with several GC layers, we are able to
automatically learn the propagation weights, and thus obtain
superior results on all datasets. This observation proves the
effectiveness of employing GNNs in the learning procedure.

Table 6. Ablation study of the learning network.
Architecture Cora Citeseer Pubmed

1 Mean Pooling Layer 82.4 71.9 80.7
1 GC Layer 83.1 73.1 80.9
2 GC Layers 83.4 73.1 81.4
3 GC Layers 83.6 73.0 81.5

4. Convergence Analysis. In GMNN, we utilize the varia-
tional EM algorithm for optimization, which consists of an
E-step and an M-step in each iteration. Next, we analyze
the convergence of GMNN. We take the Cora and Citeseer
datasets on object classification as examples, and report the
validation accuracy of both the q✓ and p� networks at each
iteration. Fig. 2 presents the convergence curve, in which it-
eration 0 corresponds to the pre-training stage. GMNN takes
only few iterations to convergence, which is very efficient.

(a) Cora (b) Citeseer

Figure 2. Convergence analysis.

7. Conclusion

This paper studies semi-supervised object classification,
which is a fundamental problem in relational data mod-
eling, and a novel approach called the GMNN is proposed.
GMNN employs a conditional random field to model the
joint distribution of object labels, and two graph neural net-
works are utilized to improve both the inference and learning
procedures. Experimental results on three tasks prove the
effectiveness of GMNN. In the future, we plan to further
improve GMNN to deal with graphs with multiple edge
types, such as knowledge graphs (Bollacker et al., 2008).

Code available at:
https://github.com/DeepGraphLearning/GMNN

Table: Semi-supervised Node Classification

Table: Unsupervised Node Representation Learning

Table: Link Classification

• State-of-the-art performance in multiple tasks
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