## **GMNN:** Graph Markov Neural Networks

Meng Qu<sup>12</sup>, Yoshua Bengio<sup>124</sup>, Jian Tang<sup>134</sup>

<sup>1</sup>Quebec Al Institute (Mila)

<sup>2</sup>University of Montreal

<sup>3</sup>HEC Montreal

<sup>4</sup>Canadian Institute for Advanced Research (CIFAR)



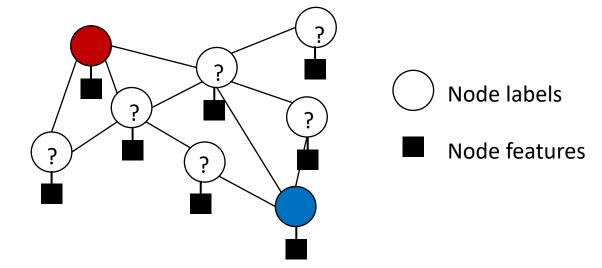






#### Semi-supervised Node Classification

- Given a graph  $G = (V, E, \mathbf{x}_{V})$ 
  - $V = V_L \cup V_U$ : nodes
  - *E*: edges
  - **x**<sub>V</sub>: node features



- Give some labeled nodes  $V_L$ , we want to infer the labels of the rest of nodes  $V_U$
- Many other tasks on graphs can be formulated as node classification
  - E.g., link classification

## Related Work: Statistical Relational Learning

• Model the joint distribution of the node labels given the node features, i.e.,  $p(\mathbf{y}_{V}|\mathbf{x}_{V})$ , with conditional random fields

$$p(\mathbf{y}_V|\mathbf{x}_V) = \frac{1}{Z(\mathbf{x}_V)} \prod_{(i,j)\in E} \psi_{i,j}(\mathbf{y}_i, \mathbf{y}_j, \mathbf{x}_V)$$

- Pros
  - Capable of modeling the dependency between the node labels
- Cons
  - Some manually defined potential functions
  - Limited model capacity
  - Difficult inference due to the complicated graph structures

### Related Work: Graph Neural Networks

- Learn effective node representations by non-linear feature propagations
  - Graph convolutional Networks (Kipf et al. 2016)
  - Graph attention networks (Veličković et al. 2017)
  - Neural message passing (Gilmer et al. 2017)
- Pros
  - Learning effective node representations
  - High model compacity through multiple non-linear graph convolutional layers
- Cons
  - Ignoring the dependency between node labels

#### **GMNN:** Graph Markov Neural Networks

- Towards combining statistical relational learning and graph neural networks
  - Learning effective node representations
  - Modeling the label dependencies of nodes
- Model the joint distribution of node labels  $\mathbf{y}_V$  conditioned on node features  $\mathbf{x}_V$ , i.e.,  $p_{\phi}(\mathbf{y}_V|\mathbf{x}_V)$
- Can be effectively optimized through pseudolikelihood Variational-EM

# Two Graph Neural Networks co-train with Each Other

- Two GNNs:
  - $p_{\phi}$ : learning network, modeling the label dependency by non-linear label propagation
  - $q_{\theta}$ : inference network, learning the node representations by non-linear feature propagation
- $q_{ heta}$  infers the labels of unlabeled nodes trained with supervision from  $p_{\phi}$  and labeled nodes
- $p_{\phi}$  is trained with a fully labeled graph, where the unlabeled nodes are labeled by  $q_{\theta}$

### **Experimental Results**

State-of-the-art performance in multiple tasks

**Table:** Semi-supervised Node Classification

| Category | Algorithm                | Cora | Citeseer | Pubmed |
|----------|--------------------------|------|----------|--------|
| SSL      | LP                       | 74.2 | 56.3     | 71.6   |
| SRL      | PRM                      | 77.0 | 63.4     | 68.3   |
|          | RMN                      | 71.3 | 68.0     | 70.7   |
|          | MLN                      | 74.6 | 68.0     | 75.3   |
| GNN      | Planetoid *              | 75.7 | 64.7     | 77.2   |
|          | GCN *                    | 81.5 | 70.3     | 79.0   |
|          | GAT *                    | 83.0 | 72.5     | 79.0   |
| GMNN     | W/o Attr. in $p_{\phi}$  | 83.4 | 73.1     | 81.4   |
|          | With Attr. in $p_{\phi}$ | 83.7 | 72.9     | 81.8   |

**Table:** Link Classification

| Category | Algorithm               | Bitcoin Alpha | Bitcoin OTC |
|----------|-------------------------|---------------|-------------|
| SSL      | LP                      | 59.68         | 65.58       |
| SRL      | PRM                     | 58.59         | 64.37       |
|          | RMN                     | 59.56         | 65.59       |
|          | MLN                     | 60.87         | 65.62       |
| GNN      | DeepWalk                | 62.71         | 63.20       |
|          | GCN                     | 64.00         | 65.69       |
| GMNN     | W/o Attr. in $p_{\phi}$ | 65.59         | 66.62       |
|          | With Attr. in $p_\phi$  | 65.86         | 66.83       |

Table: Unsupervised Node Representation Learning

| Category | Algorithm                        | Cora | Citeseer | Pubmed |
|----------|----------------------------------|------|----------|--------|
| GNN      | DeepWalk *                       | 67.2 | 43.2     | 65.3   |
|          | DGI *                            | 82.3 | 71.8     | 76.8   |
| GMNN     | With only $q_{\theta}$ .         | 78.1 | 68.0     | 79.3   |
|          | With $q_{\theta}$ and $p_{\phi}$ | 82.8 | 71.5     | 81.6   |

#### **Code available at:**

https://github.com/DeepGraphLearning/GMNN

#### Come to our Poster at #7

Jun 11th 06:30-09:00 PM @ Pacific Ballroom