Processing Megapixel Images with
Deep Attention-Sampling Models

Angelos Katharopoulos & Francois Fleuret

ICML, June 11, 2019

Funded by ENSNF



How do DNNSs process large images?

Cropping and downsampling to a manageable
resolution (e.g. 224 x 224)
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Dividing the image into patches and processing

them separately

“image taken from the Imagenet dataset
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Our contributions

» Sample from a soft attention to only process a fraction of the image in high
resolution.

» Derive gradients through the sampling for all parameters which allows to train
our models end-to-end.

» Disentangle the computational and memory requirements from the input
resolution.
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Soft Attention

Given an input x we define a neural network W(x) that uses attention

K

V(x)=g (Z a(X)if(X)i) = & (EjeapolfO) 5

i=1

where f(x) € RK*D are the features and a(x) € RK is the attention distribution.
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Attention Sampling

We approximate W(x) by Monte Carlo

V(x)~ g % Z f(x)q | where @ = {q; ~ a(x)|i € {1,2,...,N}}.
qgeR

We show that

» Sampling from the attention is optimal to approximate W(x) if
IFOill = 1F )il Y isd
» We can compute the gradients both for the parameters a(-) and ()
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Image I

Downscaled image

Vix,s)
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Image I
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Downscaled image Attention distribution
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Extracted patches

P(x,q)
Sample a set of positions @

from the attention map
—
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Extracted patches

P(x,q)
Sample a set of positions @

from the attention map
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Extracted patches

P(x,q)
Sample a set of positions @

from the attention map
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qEQ |Q‘f(P(r 1))
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Qualitative evaluation of the attention distribution ®

Epithelial Cells lIse et al. (2018) Attention Sampling
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Qualitative evaluation of the attention distribution @

Ground Truth llse et al. (2018) Attention Sampling

Extracted patch
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Thank you for your time!

Speed limit sign detection
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% CNN scale = 0.5 & CNN scale =1.0 ® Ilse et al. 2018 % ATS (ours)

Come talk to us at poster #3 at Pacific Ballroom.
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