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Problem Statement

➢ Goal: Learn sparse node embeddings for graphs.

➢ Motivation:

▪ Can be used for downstream machine learning tasks –
link/edge prediction, node classification, community 
discovery.

➢ Some notation

▪ Consider a graph associated with an adjacency matrix: 

𝐴 ∈ 0,1 𝑁×𝑁

▪ Additional side information associated with each node: 

𝑋 ∈ R 𝑁×𝐷
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Some Existing Work
• Probabilistic Methods:

• A simple class of models: Stochastic Block Models (SBM) [Nowicki & Snijders, 2001]

𝑧𝑖 ∼ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑢𝑙𝑙𝑖 𝜋 𝐴 𝑖,𝑗 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑧𝑖
𝑇𝑊𝑧𝑗

• Overlapping SBM (OSBM) [Miller et al., 2009] – participation in multiple cochromemmunities.
• Latent Feature Relational Model (LFRM), 𝑧𝑖 ∈ 0,1 𝐾 𝐾 → ∞

𝑍 ∼ 𝐼𝐵𝑃(𝛼);  𝜆 𝑘,𝑘` ∼ 𝒩 0,𝜎𝜆
2 ;  𝐴 𝑖,𝑗 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜎(𝑧𝑖

𝑇Λ𝑧𝑗))

• Can handle uncertainty & missing data better.☺

• Interpretability can be achieved by suitable choice of prior. ☺

• Uses iterative inference methods (MCMC, VB), not easy to scale.

• What about Variational Graph Autoencoder (GVAE) [Kipf & Welling, 2016] ?
• Encoder – Graph Convolutional Network (GCN) 

• Decoder – Link prediction: 𝜎 𝑧𝑖
𝑇𝑧𝑗 or Node classification: softmax(g(z))

• Fast and scalable☺

• Generative method + Uses deep NN = Best of both worlds? No

• Embeddings are often not interpretable. 

• What should be the size of the latent space? 

Stochastic blockmodels meet Graph Neural Networks



Deep Generative LFRM

• We propose DGLFRM – Deep Generative Model for 
Graphs

• Unification: Interpretability of SBM + fast inference 
via Graph Neural Network.

• Node embedding (𝑧𝑛) is the element wise product of 
two other latent variables: 𝑧𝑛 = 𝑏𝑛 ⊙𝑟𝑛.

• 𝑏𝑛 ∈ 0,1 𝐾 defines the node-community 
memberships (cluster assignments). This allows the 
model to infer the “active communities” for a given 
(𝐾).

• 𝑟𝑛 ∈ ℝ
𝐾 defines the node-community membership 

strength.
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Deep Generative LFRM
Generative Story

• Membership vector (𝑏𝑛 ∈ 0,1 𝐾)

• Stick-breaking IBP

• 𝑣𝑘 ∼ 𝐵𝑒𝑡𝑎 𝛼, 1 , 𝑘 = 1,2, … , 𝐾

• 𝜋𝑘 = ς𝑗=1
𝑘 𝑣𝑗,   𝑏𝑛𝑘 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋𝑘)

• Membership Strength (𝑟𝑛 ∈ ℝ
𝐾)

• 𝑟𝑛 ∼ 𝒩(0,1)

• Node embedding: (𝑧𝑛 = 𝑏𝑛 ⊙𝑟𝑛)

• 𝑓𝑛 = 𝑓(𝑧𝑛), where 𝑓 is a multi-layered perceptron.

• 𝑝 𝐴 𝑛𝑚 𝑓𝑛, 𝑓𝑚) = 𝜎(𝑓𝑛
𝑇𝑓𝑚)

• Posterior: p(𝑣, 𝑏, 𝑟|𝐴, 𝑋)
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Deep Generative LFRM
Inference Network

• Full mean-field approximation: Approximate the true 
posterior with the variational posterior.

• 𝑞𝜙 𝑣, 𝑏, 𝑟 = ς𝑘=1
𝐾 ς𝑛=1

𝑁 𝑞𝜙 𝑣𝑛𝑘 𝑞𝜙 𝑏𝑛𝑘 𝑞𝜙(𝑟𝑛𝑘)

• 𝑞𝜙 𝑣𝑛𝑘 = 𝐾𝑢𝑚𝑎𝑟𝑎𝑠𝑤𝑎𝑚𝑦(𝑣𝑛𝑘|𝑐𝑘 , 𝑑𝑘)

• 𝑞𝜙 𝑏𝑛𝑘 = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑏𝑛𝑘 𝜋𝑘
• 𝑞𝜙 𝑟𝑛𝑘 = 𝒩(𝜇𝑛, 𝑑𝑖𝑎𝑔(𝜎𝑛

2))

• Kumaraswamy can be re-parameterized and act as a 
reasonable approximation for Beta. For Bernoulli, we use 
continuous relaxation (Concrete Distribution).
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Deep Generative LFRM
Learning

• Since the vanilla mean-field ignores the posterior dependencies among the latent variables, we 

considered Structured Mean-Field: 𝑞𝜙 𝑣, 𝑏, 𝑟 = ς𝑘=1
𝐾 𝑞𝜙 𝑣𝑘 ς𝑛=1

𝑁 𝑞𝜙 𝑏𝑛𝑘|𝑣 𝑞𝜙(𝑟𝑛𝑘)

• The only difference from the Mean-field approximation is that 𝑣 is now a global variable (same for 
all nodes); bnk|v ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋𝑘).

• We can maximize the following ELBO:



𝑛=1

𝑁



𝑚=1

𝑁

(𝔼[log 𝑝𝜃(𝐴𝑛𝑚|𝑧𝑛, 𝑧𝑚)]) +

𝑛=1

𝑁

(𝔼[log 𝑝𝜃(𝑋𝑛|𝑧𝑛)])

−σ𝑛=1
𝑁 (𝐾𝐿 𝑞𝜙 𝑏𝑛 𝑣𝑛 𝑝𝜃 𝑏𝑛 𝑣𝑛

+ 𝐾𝐿 𝑞𝜙 𝑟𝑛 𝑝𝜃 𝑟𝑛 + 𝐾𝐿[𝑞𝜙(𝑣𝑛)|𝑝(𝑣𝑛)])
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Results
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Train network
w. Masked edges Generated networkSparse latent space

Performance on Link prediction task on five datasets.



Thank you

Please come to our poster @ 06:30PM Pacific Ballroom #180
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