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Cascade-based models for diffusion

Information spreads from users to users in the network, following
independent transmission probabilities
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Observed Diffusion Episode = {(A;1);(B;2);(C;2);(D;3);(F;4)}
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The Continuous-Time Independent Cascade Model (CTIC) defines two parameters
ku,v and ru,v per pair (u, v) of nodes in the network (Saito et al., 2011) :

ku,v : probability that u succeeds in infecting v ;

ru,v : time-delay parameter from u to v

Likelihood of a set of episodes D :

P(D) =
∏
D∈D

∏
v∈UD

P(v infected at time tDv )
∏

v 6∈UD

P(v not infected in D)
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RNN models for diffusion

Markovian assumption does not hold in many situations :
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High proba for D 
if A is infected

High proba for E 
if B is infected

⇒ Episode D as a sequence ((UD
1 , t

D
1 ), (UD

2 , t
D
2 ), ..., (UD

|D|, t
D
|D|))

Recurrent Marked Temporal Point Processes (Du et al, 2016) :

hidden h1 hidden h2 hidden h|D|

time

hidden h0

(U1,t1 )
D

(U2,t2 ) (U|D|,t|D| )
D D D D D

P(U1|h0) P(t1|h0)
D D

P(U2|h1) P(t2-t1|h1)
D D D P(U3|h2) P(t3-t2|h2)

D D D P(stop|h|D|)

... But diffusion is not a sequence !
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RNN models for diffusion
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      F does not depend on E

Tree Dependencies

⇒ Cyan (Wang et al., 2017b) : RNN with attention to select previous
states

⇒ DAN (Wang et al., 2018) : Similar to Cyan, but with a pooling
mechanism rather than RNN
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Hybrid Recurrent / Cascade-Based Model for Diffusion

⇒ Idea : Assign a continuous state zDv ∈ Rd to each infected
node v , which depends on its infection path

zDv then conditions distributions of subsequent infections from v

P(u infects v)= σ
(
< zDu , ω

(k)
v >

)
, with ω

(k)
v ∈ Rd a continuous

representation of v

If u is the first node to infect v :

zDv = fφ(zDu , ω
(f )
v )

with :

fφ a GRU cell
zDu the state of u for D (the memory)

ω
(f )
v ∈ Rd a static representation for v (the input)
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Hybrid Recurrent / Cascade-Based Model for Diffusion

⇒ Idea : Assign a continuous state zDv ∈ Rd to each infected
node v , which depends on its infection path

zDv then conditions distributions of subsequent infections from v

Inference on ancestors sequences I is required :

log p(D) = log
∑
I∈ID

p(D, I )

Inference distribution : qD(I ) =
|D|−1∏
i=1

p(Ii |D≤i , I<i ) ≈ p(I |D)

Score function estimator : ∇ΘL(D; Θ) =

∑
D∈D

EI∼qD

(log pI (D)− b
)
∇Θ log qD(I )︸ ︷︷ ︸

favors good paths

+ ∇Θ log pI (D)︸ ︷︷ ︸
increases likelihood

given the path
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