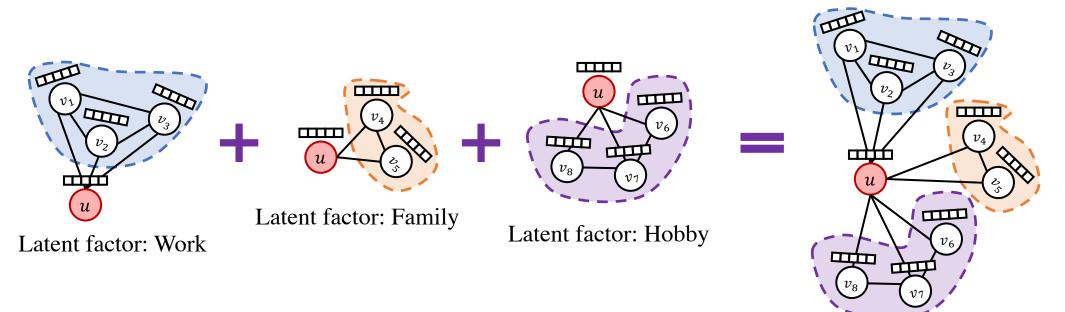


Disentangled Graph Convolutional Networks

Jianxin Ma, Peng Cui, Kun Kuang, Xin Wang, Wenwu Zhu Tsinghua University

Motivation

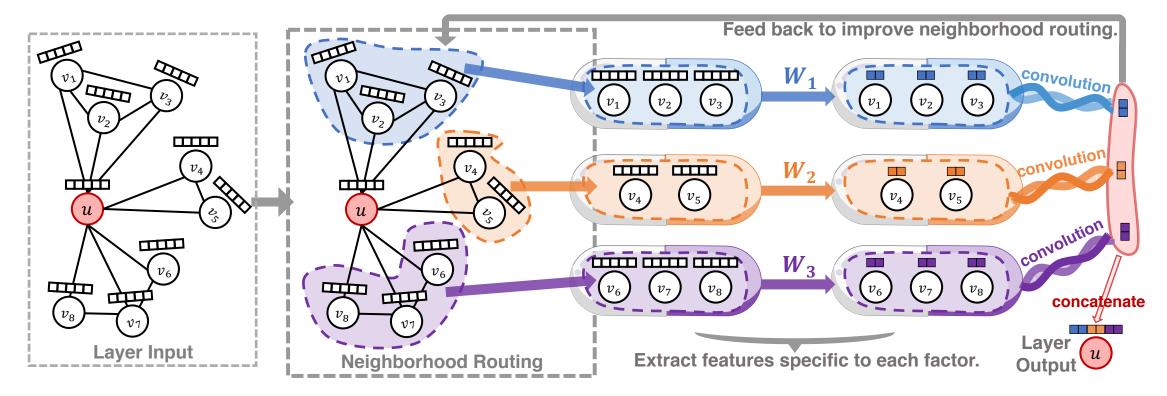
• The neighborhood of a node is formed due to many latent factors.



- Existing GCNs convolute the neighborhood as a whole.
 - They do not distinguish between the latent factors.
 - Their node representations are thus not *robust*, and hardly *interpretable*.

Disentangled GCNs

• *Disentangled representation learning* aims to identify and separate the underlying explanatory factors behind the observed data (Bengio et al., 2013).



- We identify the latent factors, and segment the neighborhood accordingly.
- Each segment is related with an isolated factor, and is convoluted separately.

Neighborhood Routing

- We propose *neighborhood routing*, to segment a neighborhood.
 - Dynamic & differentiable. Similar to capsule networks' dynamic routing.
- Phase I:
 - To extract factor-specific features.
 - For node $i \in \{u\} \cup \{v: (v, u) \in G\}$, and factor $k \in \{1, 2, \dots, K\}$,

$$\mathbf{z}_{i,k} = \frac{\sigma(W_k^{\mathsf{T}} x_i + b_k)}{\left| \left| \sigma(W_k^{\mathsf{T}} x_i + b_k) \right| \right|_2}$$

• which describes node *i*'s aspect *k*.

• Phase II:

- To infer the factor that causes the link between node *u* and a neighbor *v*.
- Initialize $c_k \leftarrow z_{u,k}$ for each factor k.
- Iterate for $T \approx 5$ times,

•
$$p_{\nu,k} \leftarrow \frac{\exp(\mathbf{z}_{\nu,k}^{\mathsf{T}} \mathbf{c}_k / \tau)}{\sum_{k'} \exp(\mathbf{z}_{\nu,k'}^{\mathsf{T}} \mathbf{c}_{k'} / \tau)}$$

$$\bullet \qquad \mathbf{c}_k \leftarrow \frac{\mathbf{z}_{u,k} + \sum_{v: (v,u) \in G} p_{v,k} \mathbf{z}_{v,k}}{\left\| \left| \mathbf{z}_{u,k} + \sum_{v: (v,u) \in G} p_{v,k} \mathbf{z}_{v,k} \right\|_2} \right\|_2}$$

• c_k describes the neighborhood's aspect k.

Intuitions & Theories

- The two intuitions behind neighborhood routing:
 - *p*(Factor *k* is the one that causes the links between node *u* and a segment) ∝ The segment contains a large number of nodes that are similar w.r.t. aspect *k*.
 - *p*(Factor *k* is the one that causes the link between node *u* and a neighbor) ∝ Node *u* and the neighbor are similar w.r.t. aspect *k*.
- Neighborhood routing is equivalent to an EM algorithm that performs inference under a von Mises-Fisher subspace clustering model.
 - It finds one large cluster in each of the *K* subspaces.

Results: Multi-label Node Classification

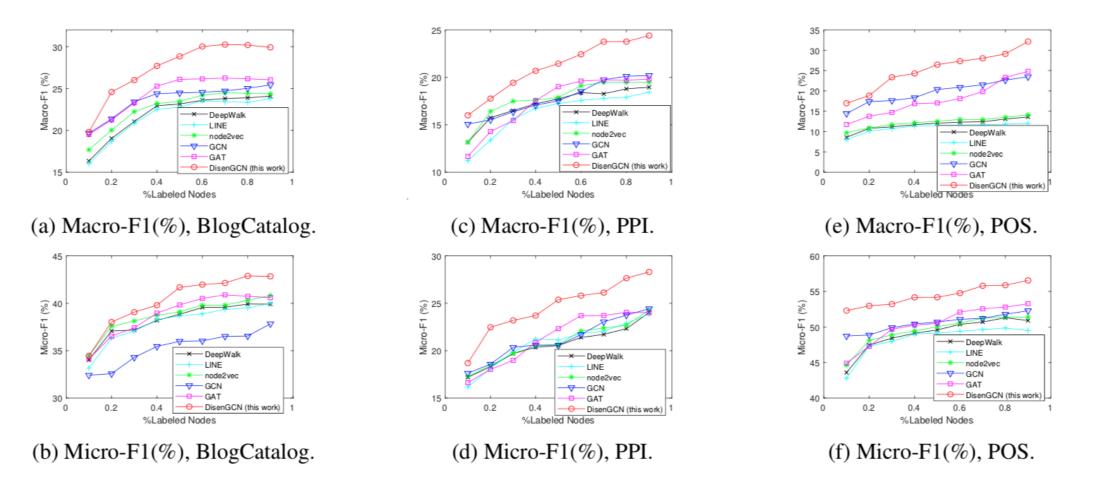


Figure 2. Macro-F1 and Micro-F1 scores on the multi-label classification tasks. Our approach consistently outperforms the best performing baselines by a large margin, reaching 10% to 20% relative improvement in most cases.

Results: Disentangled Node Representations

• Correlations between the 64 dimensions, on a graph with eight factors.

