Detecting Overlapping and Correlated Communities without Pure Nodes: Identifiability and Algorithm

Kejun Huang
University of Florida

Xiao Fu
Oregon State University

International Conference on Machine Learning 2019

MMSB [Airoldi et al., 2008]

- Given a graph adjacency matrix \boldsymbol{A}
- An edge is present/absent follows Bernoulli

$$
\operatorname{Pr}\left(A_{i j}=\{0,1\}\right)=P_{i j}^{A_{i j}}\left(1-P_{i j}\right)^{1-A_{i j}}
$$

- $\boldsymbol{P}=\boldsymbol{M}^{\top} \boldsymbol{B M}: \quad \boldsymbol{B} \in[0,1]^{k \times k}$ community interaction $\boldsymbol{m}_{i} \in \Delta=\left\{\boldsymbol{x}: \boldsymbol{x} \geq 0, \boldsymbol{I}^{\top} \boldsymbol{x}=1\right\}$ mixed-membership of node i
* Task: Uniquely identify (part of) \boldsymbol{M} from data \boldsymbol{A}
* Challenges: identifiability \& scalability
inspired by Anandkumar et al. [2014]
- Divide the network into three sets of nodes S_{0}, S_{1}, and S_{2}
$-\mathcal{S}_{2}$: n nodes interested in finding their memberships
- $\mathcal{S}_{1}: k-1$ nodes
- \mathcal{S}_{0} : all the other nodes to act as 2-star samples
- $\widehat{Y}_{i_{1} i_{2}}=\frac{1}{\left|\mathcal{S}_{0}\right|} \sum_{i_{0} \in \mathcal{S}_{0}} A_{i_{0} i_{1}} A_{i_{0} i_{2}} \quad i_{1} \in \mathcal{S}_{1} \quad i_{2} \in \mathcal{S}_{2}$
- $Y_{i_{1} i_{2}}=\mathrm{E}\left[\widehat{Y}_{i_{1} i_{2}}\right]=\boldsymbol{m}_{i_{1}}^{\top} \boldsymbol{B}^{\top}\left(\frac{1}{\left|\mathcal{S}_{0}\right|} \sum_{i_{0} \in \mathcal{S}_{0}} \boldsymbol{m}_{i_{0}} \boldsymbol{m}_{i_{0}}^{\top}\right) \boldsymbol{B} \boldsymbol{m}_{i_{2}}$
- Let $\boldsymbol{\Sigma}=\mathrm{E}\left[\boldsymbol{m}_{i_{0}} \boldsymbol{m}_{i_{0}}^{\top}\right]$ and $\left|\mathcal{S}_{0}\right| \rightarrow \infty$, then $\widehat{\boldsymbol{Y}} \rightarrow \boldsymbol{M}_{1}^{\top} \boldsymbol{B}^{\top} \boldsymbol{\Sigma} \boldsymbol{B} \boldsymbol{M}_{2}$

$$
\boldsymbol{Y}=\boldsymbol{\Xi} M_{2}
$$

\star Can we uniquely recover $\boldsymbol{M}_{2} \in \Delta^{n}$ from $\boldsymbol{Y} \in \mathbb{R}^{(k-1) \times n}$?

Geometric Interpretation

$$
\boldsymbol{y}_{i_{2}}=\boldsymbol{\Xi} \boldsymbol{m}_{i_{2}}=\sum_{j=1}^{k} \boldsymbol{\xi}_{j} m_{j i_{2}} \quad \boldsymbol{m}_{i_{2}} \in \Delta
$$

- $\boldsymbol{y}_{i_{2}}$ is a convex combination of $\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{k}$
- $\boldsymbol{y}_{i_{2}}$ belongs to the convex hull of $\xi_{1}, \ldots, \boldsymbol{\xi}_{k}$
- There are infinitely many enclosing simplexes
* Intuition: Find the one with minimum volume

$$
\begin{aligned}
& \underset{\boldsymbol{\Xi}, \boldsymbol{M}_{2}}{\operatorname{minimize}} \frac{1}{(k-1)!}\left|\operatorname{det}\left[\begin{array}{lll}
\boldsymbol{\xi}_{1}-\boldsymbol{\xi}_{k} & \cdots & \boldsymbol{\xi}_{k-1}-\boldsymbol{\xi}_{k}
\end{array}\right]\right| \\
& \text { subject to } \boldsymbol{Y}=\boldsymbol{\Xi} \boldsymbol{M}_{2}, \quad \boldsymbol{M}_{2} \geq 0, \quad \boldsymbol{I}^{\top} \boldsymbol{M}_{2}=\boldsymbol{1}
\end{aligned}
$$

Definition: Sufficiently Scattered (informal)

Let \mathcal{D} be a "hyper-disc" on the hyperplane $\boldsymbol{I}^{\top} \boldsymbol{x}=1$ defined as $\mathcal{D}=\left\{\boldsymbol{x} \in \mathbb{R}^{k}:\|\boldsymbol{x}\|^{2} \leq \frac{1}{k-1}, \boldsymbol{I}^{\top} \boldsymbol{x}=1\right\}$. A matrix \boldsymbol{M}, with all its columns in Δ, is called sufficiently scattered if $\mathcal{D} \subseteq \operatorname{conv}(\boldsymbol{M})$.
[Huang et al., 2014, 2016, 2018]

Pure node

Sufficiently scattered

Not identifiable

Identifiability

- Equivalently, define $\widetilde{\boldsymbol{Y}}=\left[\begin{array}{l}\boldsymbol{Y} \\ \boldsymbol{I}^{\top}\end{array}\right], \quad \widetilde{\boldsymbol{\Xi}}=\left[\begin{array}{l}\boldsymbol{\Xi} \\ \boldsymbol{I}^{\top}\end{array}\right]$,

$$
\begin{aligned}
& \underset{\widetilde{\boldsymbol{\Xi}}, \boldsymbol{M}_{2}}{\operatorname{minizize}}|\operatorname{det} \widetilde{\boldsymbol{\Xi}}| \\
& \text { subject to } \widetilde{\boldsymbol{Y}}=\widetilde{\boldsymbol{\Xi}} \boldsymbol{M}_{2}, \boldsymbol{M}_{2} \geq 0, \boldsymbol{e}_{k}^{\top} \widetilde{\boldsymbol{\Xi}}=\boldsymbol{I}^{\top} .
\end{aligned}
$$

Theorem [Fu et al., 2015, Lin et al., 2015]

Suppose $\boldsymbol{Y}=\boldsymbol{\Xi}^{\natural} \boldsymbol{M}_{2}^{\natural}$, where $\operatorname{rank}\left(\widetilde{\boldsymbol{\Xi}}^{\natural}\right)=k$ and $\boldsymbol{M}_{2}^{\natural} \in \Delta^{n}$ is sufficiently scattered. Let ($\boldsymbol{M}_{\star}, \boldsymbol{\Xi}_{\star}$) be an optimal solution for (\$), then there exists a permutation matrix $\boldsymbol{\Pi} \in \mathbb{R}^{k \times k}$ such that

$$
M_{2}^{\natural}=\Pi M_{\star}, \quad \tilde{\Xi}^{\natural}=\Xi_{\star} \Pi^{\top} .
$$

Experiment

- Data sets:
- Coauthorship data from Microsoft Academic Graph (MAG) and DBLP [Mao et al., 2017]
- Groundtruth community: "field of study" in MAG
and venues in DBLP

Edoardo M Airoldi, David M Blei, Stephen E Fienberg, and Eric P Xing. Mixed membership stochastic blockmodels. Journal of Machine Learning Research, 9: 1981-2014, 2008.

Animashree Anandkumar, Rong Ge, Daniel Hsu, and Sham M Kakade. A tensor approach to learning mixed membership community models. Journal of Machine Learning Research, 15(1):2239-2312, 2014.
Xiao Fu, Wing-Kin Ma, Kejun Huang, and Nicholas D Sidiropoulos. Blind separation of quasi-stationary sources: Exploiting convex geometry in covariance domain. IEEE Transactions on Signal Processing, 63(9), 2015.
Kejun Huang, Nicholas D Sidiropoulos, and Ananthram Swami. Non-negative matrix factorization revisited: Uniqueness and algorithm for symmetric decomposition. IEEE Transactions on Signal Processing, 62(1):211-224, 2014.
Kejun Huang, Xiao Fu, and Nikolaos D Sidiropoulos. Anchor-free correlated topic modeling: Identifiability and algorithm. In Advances in Neural Information Processing Systems, pages 1786-1794, 2016.

Kejun Huang, Xiao Fu, and Nicholas Sidiropoulos. Learning hidden Markov models from pairwise co-occurrences with application to topic modeling. In International Conference on Machine Learning, pages 2068-2077. PMLR, 2018.

Chia-Hsiang Lin, Wing-Kin Ma, Wei-Chiang Li, Chong-Yung Chi, and ArulMurugan Ambikapathi. Identifiability of the simplex volume minimization criterion for blind hyperspectral unmixing: The no-pure-pixel case. IEEE Transactions on Geoscience and Remote Sensing, 53(10):5530-5546, 2015.
Xueyu Mao, Purnamrita Sarkar, and Deepayan Chakrabarti. On mixed memberships and symmetric nonnegative matrix factorizations. In International Conference on Machine Learning, pages 2324-2333, 2017.

Krzysztof Nowicki and Tom A B Snijders. Estimation and prediction for stochastic blockstructures. Journal of the American Statistical Association, 96(455): 1077-1087, 2001.
Tom AB Snijders and Krzysztof Nowicki. Estimation and prediction for stochastic blockmodels for graphs with latent block structure. Journal of Classification, 14(1): 75-100, 1997.

