Learning to Route in Similarity Graphs

Dmitry Baranchuk

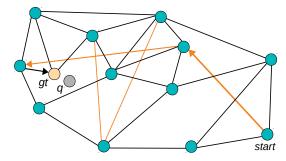
joint work with Dmitry Persiyanov, Anton Sinitsin and Artem Babenko

Overview

The Budgeted Nearest Neighbor Search Problem

Similarity Graphs

Learning to Route in Similarity Graphs

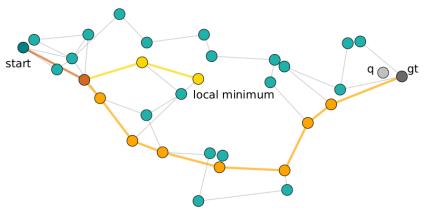

Evaluation

The Budgeted Nearest Neighbor Search Problem

- $\{x_1,...,x_N\} \subset \mathbb{R}^D$ search database
- $q \in \mathbb{R}^{D}$ query
- DCS maximal number of distance computations
- *Recall*@1 a rate of queries for which the actual nearest neighbor is successfully found

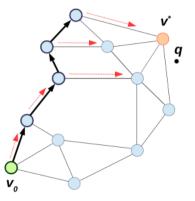
Similarity Graphs

- Vertices correspond to the database items
- Edges connect (mostly) nearest neighbors


• Several state-of-the-art methods exist e.g. HNSW¹, NSG²

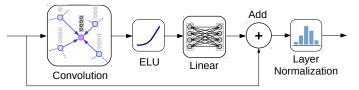
¹Malkov, Y., Yashunin, D. Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. TPAMI 2018

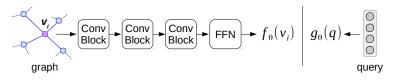
²Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. Fast approximate nearest neighbor search with the navigating spreading-out graph. PVLDB 2019


Routing Algorithms

- Greedy routing: Pick the best neighbor of the current vertex
- Beam search: Expand the most promising vertex in the candidate pool
- Our method: Learn a routing algorithm directly from data

Learning to Route in Similarity Graphs


- 1. **Imitation Learning**: Train the agent to imitate expert decisions
- 2. **Agent** is a beam search based on learned vertex representations
- Expert encourages the agent to follow a shortest path to the actual nearest neighbor v*


Ross, S., Gordon, G. J., and Bagnell, D. A reduction of imitation learning and structured prediction to no-regret online learning. AISTATS 2011

Model Architecture

Graph Convolutional Network learns representations for vertices that account for the underlying structure of the similarity graph

Graph Convolutional Block

Kipf, T. N. and Welling, M. Semi-supervised classification with graph convolutional networks. ICLR 2017

Evaluation

- Datasets with 10^5 points
- No additional cost in run-time
- PyTorch implementation³

DCS	Vertex	SIFT100K	DEEP100K	GloVe100K
budget	Representations	Recall@1	Recall@1	Recall@1
	Original	0.239	0.386	0.198
128	Learned	0.371	0.474	0.305
	Original	0.672	0.795	0.400
256	Learned	0.799	0.811	0.526
	Original	0.936	0.940	0.582
512	Learned	0.949	0.945	0.676

Search performance Recall@1 for distance computation (DCS) budgets

³https://github.com/dbaranchuk/learning-to-route