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Unsupervised representation learning

I Robust to pertubations of the input

I Ability to reconstruct (→ prevalance of autoencoders)

I Useful for downstream tasks (e.g., clustering, or classification)
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Unsupervised representation learning
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Unsupervised representation learning

fθ : X → Z

I Robust to pertubations of the input
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Enforce distributional properties through adversarial training

Encoder Decoder

gφ : Z → X

(by far not exhaustive)



Motivating (toy) example
We aim to control properties of the latent space, but from a topological point of view!
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Assume, we want to do Kernel Density Estimation (KDE) in the latent space Z .

Bandwidth selection: Scott’s rule [Scott, 1992]

Data (zi) Gaussian KDE

We aim to control properties of the latent space, but from a topological point of view!



Motivating (toy) example

Assume, we want to do Kernel Density Estimation (KDE) in the latent space Z .

Bandwidth selection: Scott’s rule [Scott, 1992]

Data (zi) Gaussian KDE

Bandwidth selection can be challenging,

as the scaling greatly differs!

Gaussian KDEData (zi)

We aim to control properties of the latent space, but from a topological point of view!
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Controlling connectivity

Vietoris Rips Persistent Homology (PH)

I PH tracks topological changes as the ball radius r increases

I Connectivity information is caputred by 0-dim. persistent homology
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Controlling connectivity

Vietoris Rips Persistent Homology (PH)

I PH tracks topological changes as the ball radius r increases

I Connectivity information is caputred by 0-dim. persistent homology

Homogeneous arrangement!

η/2

z 7→ fθ(z)

What if

Radius r = r3

Latent space Z

Q: How do we capture topological properties and what do we want to control?

beneficial for KDE



Connectivity loss

fθ : X → Rn gφ : Rn → X Rec[·, ·]x̂x

Q: How can we control topological properties (connectivity properties in particular)?
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Connectivity loss

fθ : X → Rn(x1, . . . , xB) gφ : Rn → X Rec[·, ·]x̂

 
Until now, we could not backpropagate through PH

PH

Gradient signal

x̂
+ Connectivity loss

Consider batches

Lη

,
η

PH

penalize deviation from homogeneousarrangement (with scale η)

Q: How can we control topological properties (connectivity properties in particular)?
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From a theoretical perspective, we show . . .

(1) . . . that under mild conditions, the connectivity loss is differentiable

(3) . . . “densification” effects occur for samples,N, larger than the training batch size B

· · ·

(2) . . .metric-entropy based guidelines for choosing the training batch size B

N� B

Connectivity loss

+ Connectivity loss

PH

Enc Dec

Intuitively, during training ...
... the reconstruction loss controls what is worth capturing
... the connectivity loss controls how to topologically organize the latent space

x1, . . . , xN
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Experiments – Task: One-class learning

Rec[·, ·]fθ gφ + Connectivity loss (with fixed scale η)

PH

fθ

Trained only once (e.g., on CIFAR-10 without labels)
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fθfθ

KDE-inspired one-class "learning" Computation of a one-class score

Count #samples falling into balls of radius η,
anchored at the one-class instances

In-class

Out-of-class
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ADT [Goland & El-Yaniv, NIPS ’18]
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Deep-SVDD [Ruff et al., ICML ’18]

CIFAR-10 (AE trained on CIFAR-100)

Training batch size: B = 100
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CIFAR-20 (AE trained on CIFAR-10)

ADT [Goland & El-Yaniv, NIPS ’18]

DAGMM [Zong et al., ICLR ’18]

DSEBM [Zhai et al., ICML ’16]

Deep-SVDD [Ruff et al., ICML ’18] Training batch size: B = 100
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Deep-SVDD [Ruff et al., ICML ’18] Training batch size: B = 100
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Deep-SVDD [Ruff et al., ICML ’18] Training batch size: B = 100
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Low-sample size
ImageNet (i.e., evaluation of 1,000 one-class models)

using one AE trained on CIFAR-10
using one AE trained on CIFAR-100ADT [Goland & El-Yaniv, NIPS ’18]

DAGMM [Zong et al., ICLR ’18]

DSEBM [Zhai et al., ICML ’16]

Deep-SVDD [Ruff et al., ICML ’18] Training batch size: B = 100



https://github.com/c-hofer/COREL_icml2019

PyTorch code available!

Come see our poster#83
at 6.30pm (Pacific Ballroom)

import torch
import chofer_torchex.pershom as pershom

batch = torch.randn(10,5, requires_grad=True)
batch = batch.to(’cuda’)

non_ess, ess = pershom.vr_persistence_l1(batch,0,0)

example_loss = non_ess[:,1].sum()
example_loss.backward()


