Connectivity-Optimized Representation Learning via Persistent Homology

Christoph D. Hofer, Roland Kwitt

University of Salzburg

Mandar Dixit M Microsoft

Marc Niethammer UNC Chapel Hill

Q: What makes a **good** representation?

- ► Ability to reconstruct (→ prevalance of autoencoders)
- Robust to pertubations of the input
- ► Useful for downstream tasks (e.g., clustering, or classification)

► etc.

Q: What makes a **good** representation?

- ► Ability to reconstruct (→ prevalance of autoencoders)
- Robust to pertubations of the input
- ► Useful for downstream tasks (e.g., clustering, or classification)
- ► etc.

Common idea: Control (/or enforce) properties of (/on) the latent representations in \mathcal{Z} .

► $\operatorname{Rec}[x, \hat{x}]$

Q: What makes a **good** representation?

- ► Ability to reconstruct (→ prevalance of autoencoders)
- ► Robust to pertubations of the input
- ► Useful for downstream tasks (e.g., clustering, or classification)
- ► etc.

Common idea: Control (/or enforce) properties of (/on) the latent representations in \mathcal{Z} .

Contractive AE's [Rifai et al., ICML '11]

 \hat{x} \rightarrow Rec $[x, \hat{x}] + \text{Reg}$

Q: What makes a **good** representation?

- Ability to reconstruct (\rightarrow prevalance of autoencoders)
- Robust to pertubations of the input
- ► Useful for downstream tasks (e.g., clustering, or classification)

► etc.

Common idea: Control (/or enforce) properties of (/on) the latent representations in \mathcal{Z} .

Denoising AE's [Vincent et al., JMLR '10]

→ $\operatorname{Rec}[x, \hat{x}]$

Q: What makes a **good** representation?

- ► Ability to reconstruct (→ prevalance of autoencoders)
- ► Robust to pertubations of the input
- ► Useful for downstream tasks (e.g., clustering, or classification)
- ► etc.

Common idea: Control (/or enforce) properties of (/on) the latent representations in \mathcal{Z} .

Sparse AE's [Makhzani & Frey, ICLR '14]

 \hat{x} \rightarrow Rec $[x, \hat{x}] + \text{Reg}$

Q: What makes a **good** representation?

- ► Ability to reconstruct (→ prevalance of autoencoders)
- ► Robust to pertubations of the input
- ► Useful for downstream tasks (e.g., clustering, or classification)
- ► etc.

Common idea: Control (/or enforce) properties of (/on) the latent representations in \mathcal{Z} .

Enforce distributional properties through **adversarial** training

Adversarial AE's [Makhzani et al., ICLR '16] (by far not exhaustive)

→ $\operatorname{Rec}[x, \hat{x}]$

We aim to control properties of the latent space, but from a **topological point of view**!

Motivating (toy) example

We aim to control properties of the latent space, but from a **topological point of view**!

Assume, we want to do **Kernel Density Estimation (KDE)** in the latent space \mathcal{Z} .

Data (z_i)

Gaussian KDE

Bandwidth selection: Scott's rule [Scott, 1992]

Motivating (toy) example

We aim to control properties of the latent space, but from a **topological point of view**!

Assume, we want to do **Kernel Density Estimation (KDE)** in the latent space \mathcal{Z} .

Bandwidth selection: Scott's rule [Scott, 1992]

Bandwidth selection can be challenging, as the scaling greatly differs!

Motivating (toy) example

Vietoris Rips Persistent Homology (PH)

Vietoris Rips Persistent Homology (PH)

Vietoris Rips Persistent Homology (PH)

- \blacktriangleright PH tracks topological changes as the ball radius r increases
- ► **Connectivity information** is caputred by 0-dim. persistent homology

Vietoris Rips Persistent Homology (PH)

Homogeneous arrangement!

- \blacktriangleright PH tracks topological changes as the ball radius r increases
- ► **Connectivity information** is caputred by 0-dim. persistent homology

Controlling connectivity

beneficial for KDE

Connectivity loss

Connectivity loss

Connectivity loss

penalize deviation from **homogeneous arrangement** (with scale η)

Connectivity loss

penalize deviation from **homogeneous arrangement** (with scale η)

Connectivity loss

penalize deviation from **homogeneous arrangement** (with scale η)

(1) . . . that under mild conditions, the **connectivity loss is differentiable**

Connectivity loss

••• + Connectivity loss

(1) . . . that under mild conditions, the **connectivity loss is differentiable**

(2) . . . metric-entropy based guidelines for choosing the training batch size **B**

Connectivity loss

••• + Connectivity loss

(1) . . . that under mild conditions, the **connectivity loss is differentiable**

(2) . . . metric-entropy based guidelines for choosing the training batch size **B**

(3) . . . "densification" effects occur for samples, \mathbf{N} , larger than the training batch size \mathbf{B}

Connectivity loss

•• + Connectivity loss

(1) . . . that under mild conditions, the **connectivity loss is differentiable**

(2) . . . metric-entropy based guidelines for choosing the training batch size **B**

 $(3) \dots$ "densification" effects occur for samples, N, larger than the training batch size B

Intuitively, during training ...

... the reconstruction loss controls **what** is worth capturing ... the connectivity loss controls **how** to topologically organize the latent space

Connectivity loss

•• + Connectivity loss

Experiments – Task: One-class learning

Trained only **once** (e.g., on CIFAR-10 without labels)

Experiments – Task: One-class learning

KDE-inspired **one-class** "learning"

Trained only **once** (e.g., on CIFAR-10 without labels)

Experiments – Task: One-class learning

Count #samples falling into balls of radius η , anchored at the one-class instances

Trained only **once** (e.g., on CIFAR-10 without labels)

ADT [Goland & El-Yaniv, NIPS '18] DAGMM [Zong et al., ICLR '18] DSEBM [Zhai et al., ICML '16] Deep-SVDD [Ruff et al., ICML '18]

Results – Task: One-class learning

CIFAR-10 (AE trained on CIFAR-100)

ADT [Goland & El-Yaniv, NIPS '18] DAGMM [Zong et al., ICLR '18] DSEBM [Zhai et al., ICML '16] Deep-SVDD [Ruff et al., ICML '18]

Results – Task: One-class learning

CIFAR-20 (AE trained on CIFAR-10)

Results – Task: One-class learning

CIFAR-20 (AE trained on CIFAR-10)

ADT [Goland & El-Yaniv, NIPS '18] DAGMM [Zong et al., ICLR '18] DSEBM [Zhai et al., ICML '16] Deep-SVDD [Ruff et al., ICML '18]

Results – Task: One-class learning

CIFAR-100 (AE trained on CIFAR-10)

ADT [Goland & El-Yaniv, NIPS '18] DAGMM [Zong et al., ICLR '18] DSEBM [Zhai et al., ICML '16] Deep-SVDD [Ruff et al., ICML '18]

Results – Task: One-class learning

ImageNet (i.e., evaluation of **1,000** one-class models)

DAGMM [Zong et al., ICLR '18] DSEBM [Zhai et al., ICML '16] Deep-SVDD [Ruff et al., ICML '18]

Results – Task: One-class learning

Come see our poster **#83** at 6.30pm (Pacific Ballroom)

```
import torch
import chofer_torchex.pershom as pershom
batch = torch.randn(10,5, requires_grad=True)
batch = batch.to('cuda')
non_ess, ess = pershom.vr_persistence_l1(batch,0,0)
example_loss = non_ess[:,1].sum()
example_loss.backward()
```

https://github.com/c-hofer/COREL_icml2019

PyTorch code available!

