

# **Adaptive Neural Trees**





Ryutaro Tanno, Kai Arulkumaran, Daniel C. Alexander, Antonio Criminisi, Aditya Nori

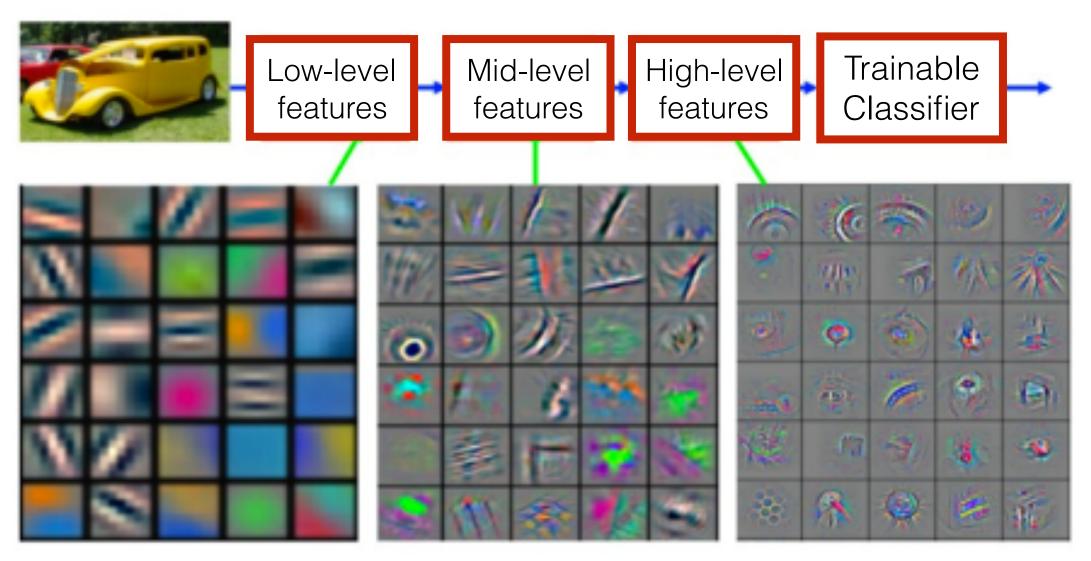






#### 『hierarchical representation of data』

ImageNet classifiers with CNNs [Zeiler and Fergus, ECCV 2014]



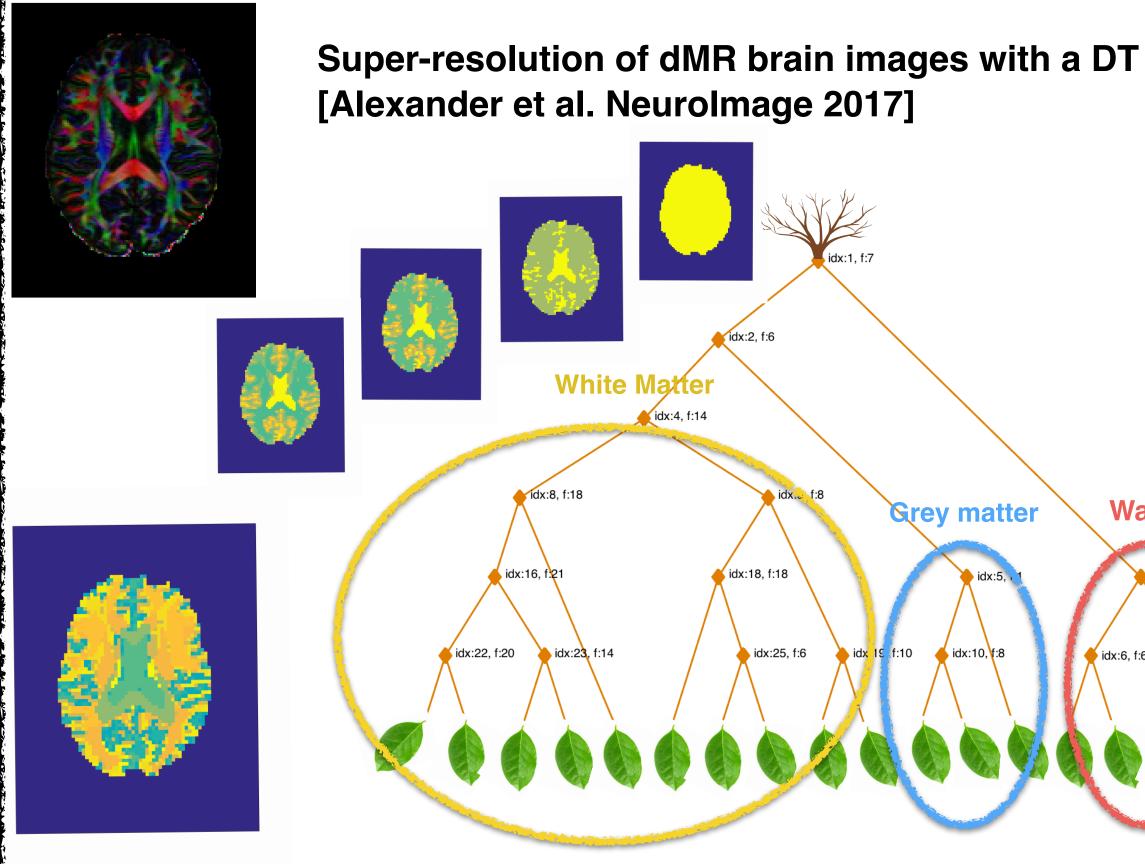
Oriented edges & colours

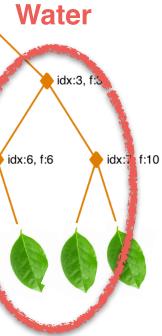
Textures & patterns

Object parts



#### 『hierarchical clustering of data』







『hierarchical representation of data』

### **Decision Trees**

Image: Second start for the second start of the second start of

## **Deep Neural Networks**

<sup>¶</sup>hierarchical *representation* of data<sub></sub>

- + learn features of data
- + scalable learning with stochastic optimisation
- architectures are hand-designed
- heavy-weight inference, engaging every parameter of the model for each input

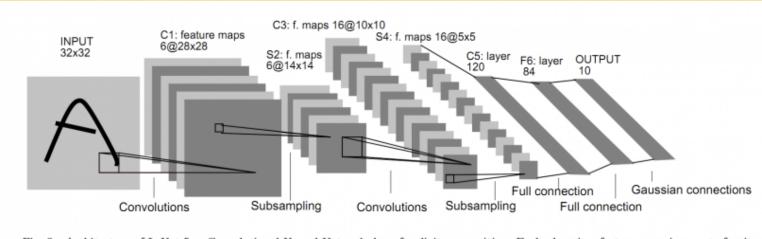


Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

### **Decision Trees**

『hierarchical clustering of data』

## **Deep Neural Networks**

**Chierarchical** *representation* of data

- + learn features of data
- + scalable learning with stochastic optimisation
- architectures are hand-designed
- heavy-weight inference, engaging every parameter of the model for each input

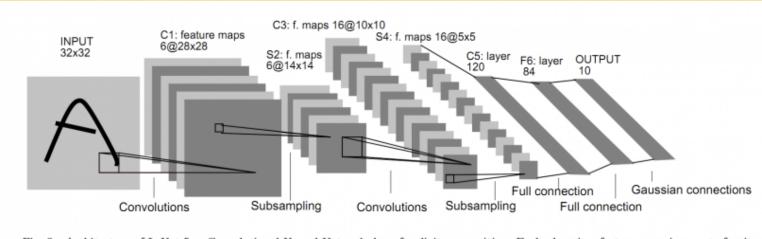
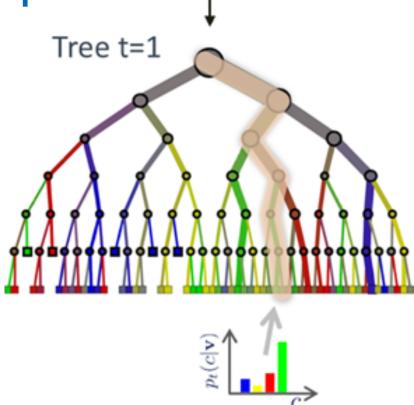


Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

### **Decision Trees**

<sup>**I**</sup>hierarchical *clustering* of data

- operate on hand-designed features
- limited expressivity with simple splitting functions
- architectures are learned from data
- + lightweight inference, activating only a fraction of the model per input





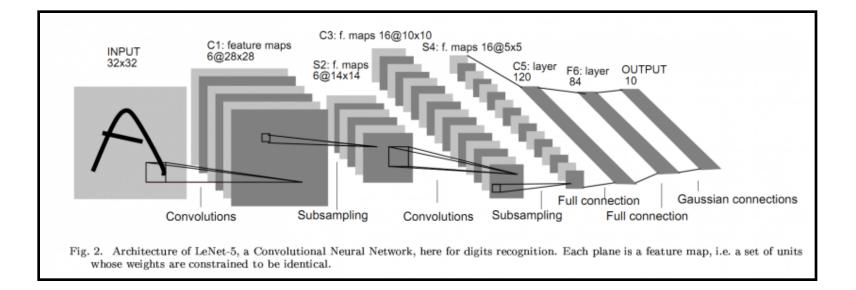


# Joining the Paradigms



#### **I**hierarchical *representation* of data

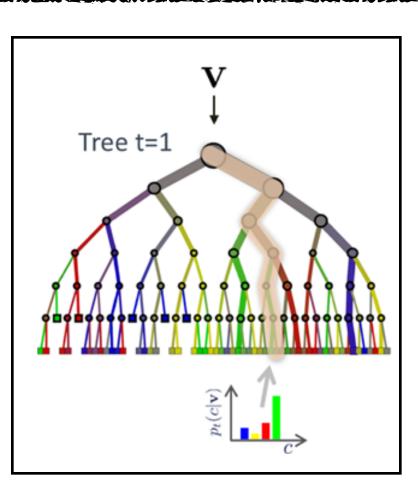
- + learn features of data
- + scalable learning with stochastic optimisation



#### ANTs unify the two paradigms and generalise previous work

#### <sup>**I</sup>hierarchical** *clustering* **of data</sup>**

- + architectures are learned from data
- + lightweight inference, activating only a fraction of the model per input



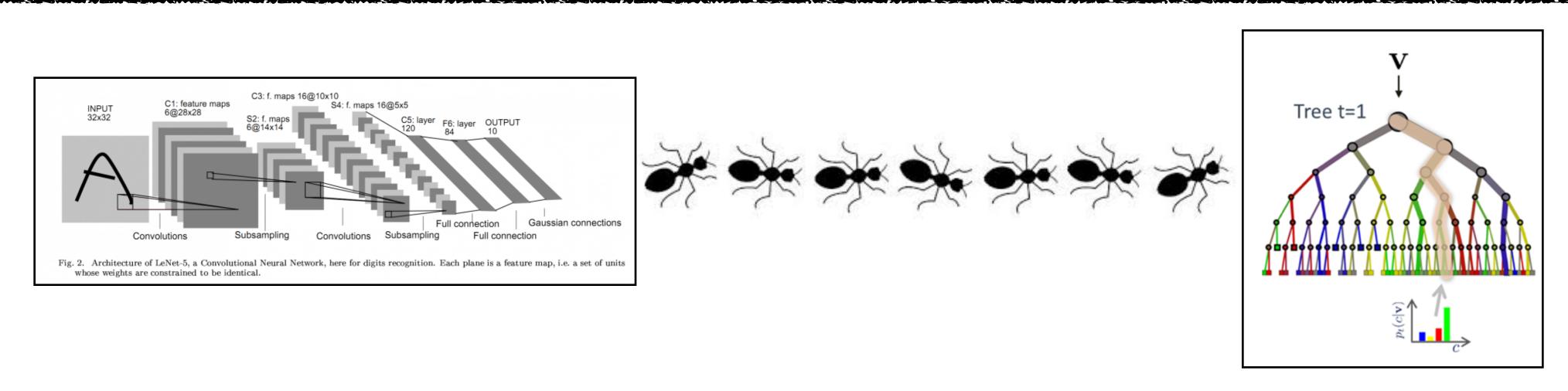


# Joining the Paradigms



#### <sup>¶</sup>hierarchical *representation* of data<sub></sub>

- + learn features of data
- + scalable learning with stochastic optimisation



#### ANTs unify the two paradigms and generalise previous work

#### <sup>**I**</sup>hierarchical *clustering* of data

- + architectures are learned from data
- + lightweight inference, activating only a fraction of the model per input





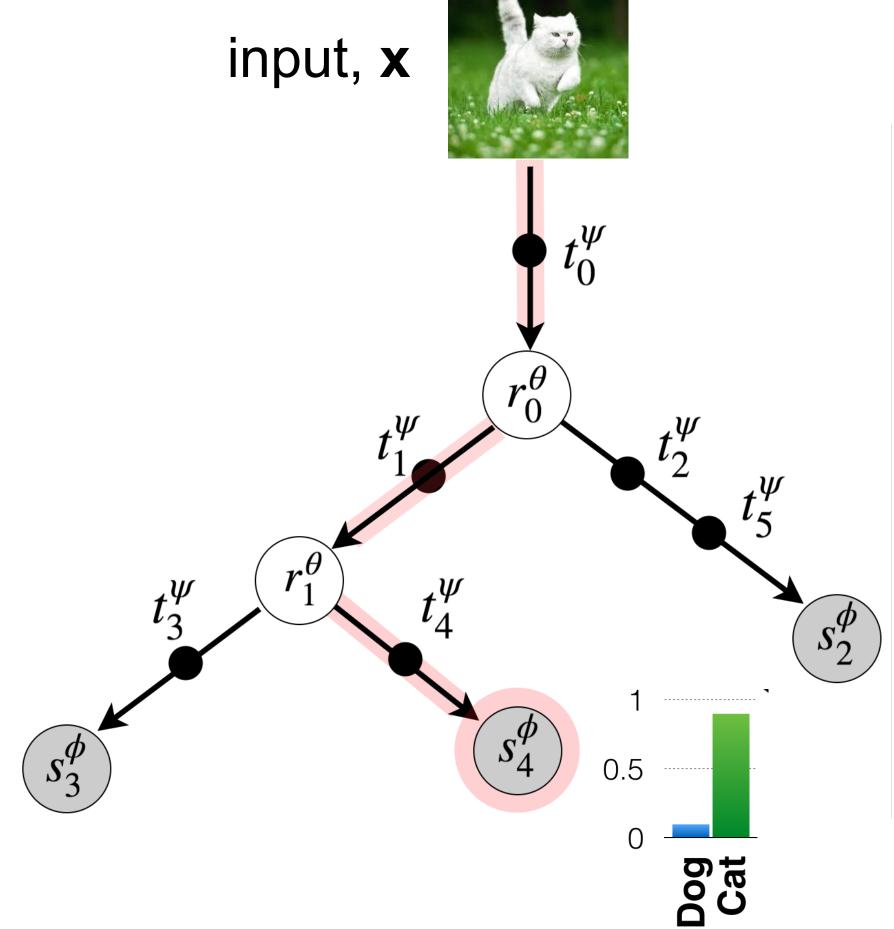
•ANTs consist of two key designs:



#### ANTs consist of two key designs:

#### (1). DTs which uses NNs in every path and routing decisions.



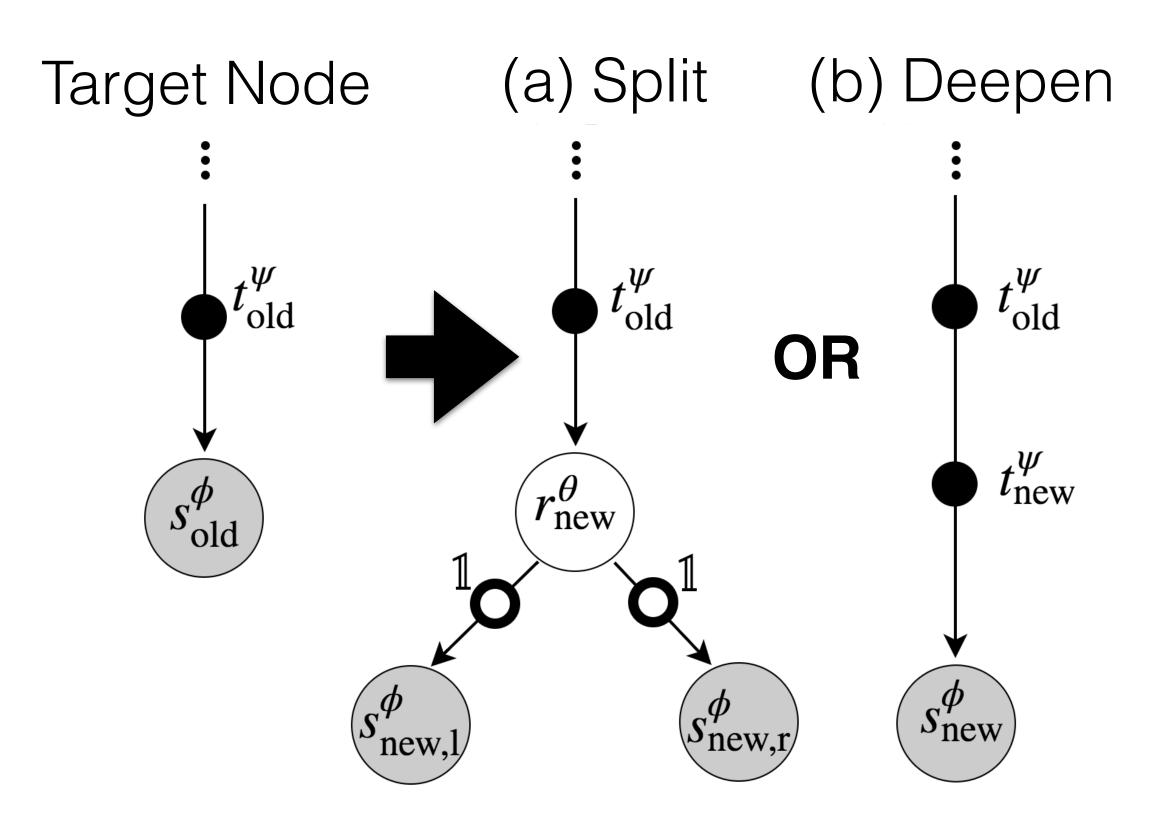


# What are ANTs?

#### ANTs consist of two key designs:

#### (1). DTs which uses NNs in every path and routing decisions.

#### (2). DT-like architecture growth using SGD

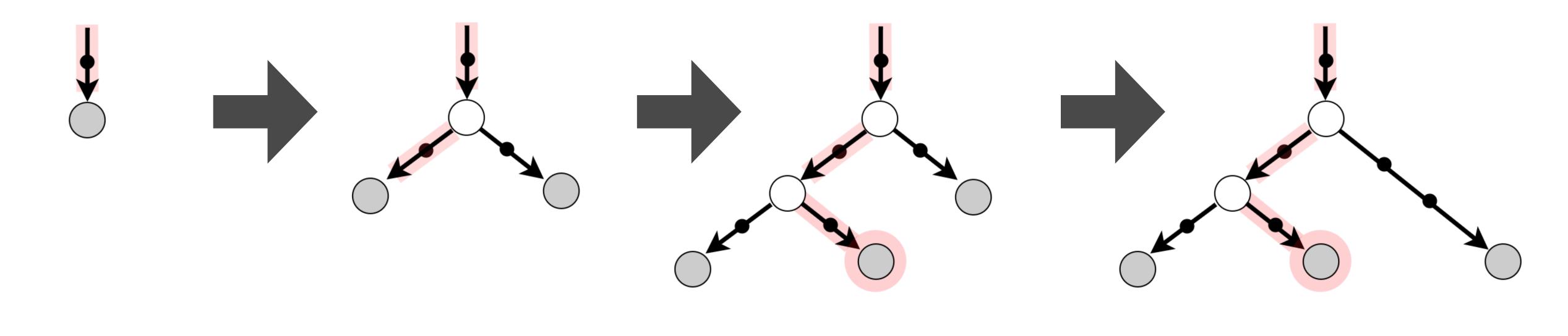




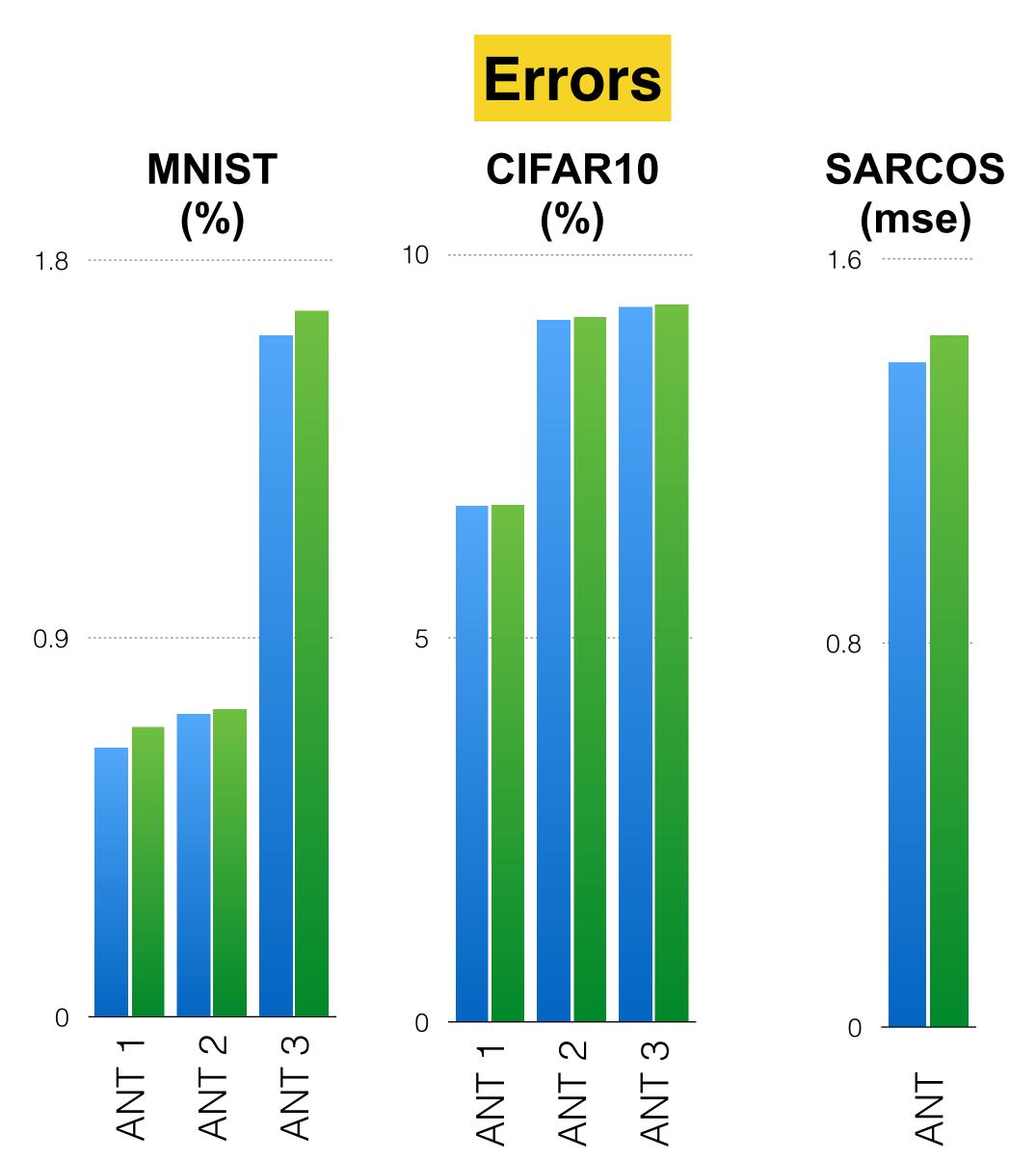
#### •ANTs consist of two key designs:

#### (1). DTs which uses NNs in every path and routing decisions.

(2). DT-like architecture growth using SGD

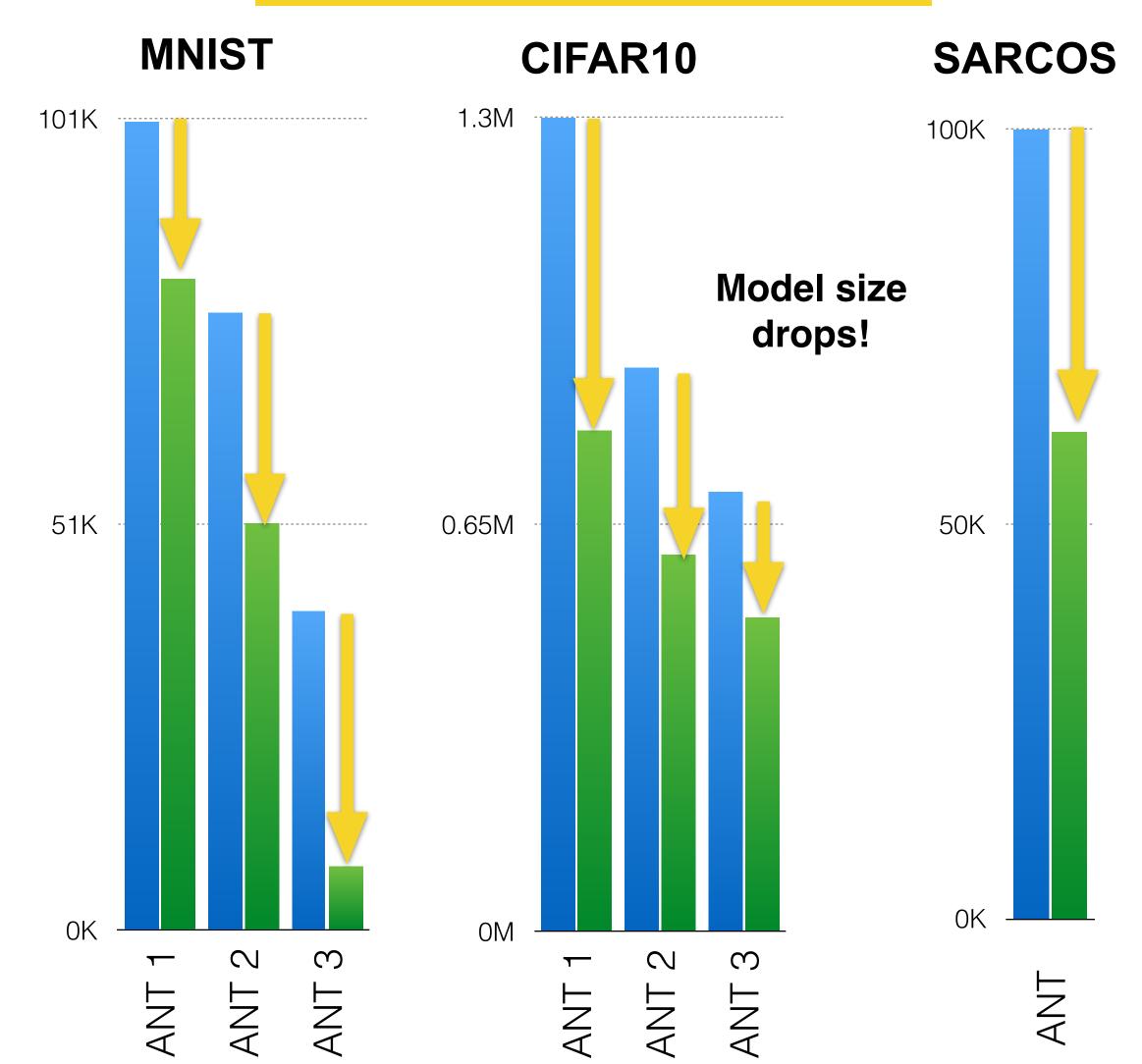


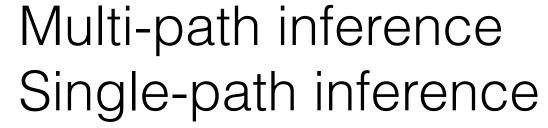
# **Conditional Computation**



• Single-path inference enables efficient inference without compromising accuracy.

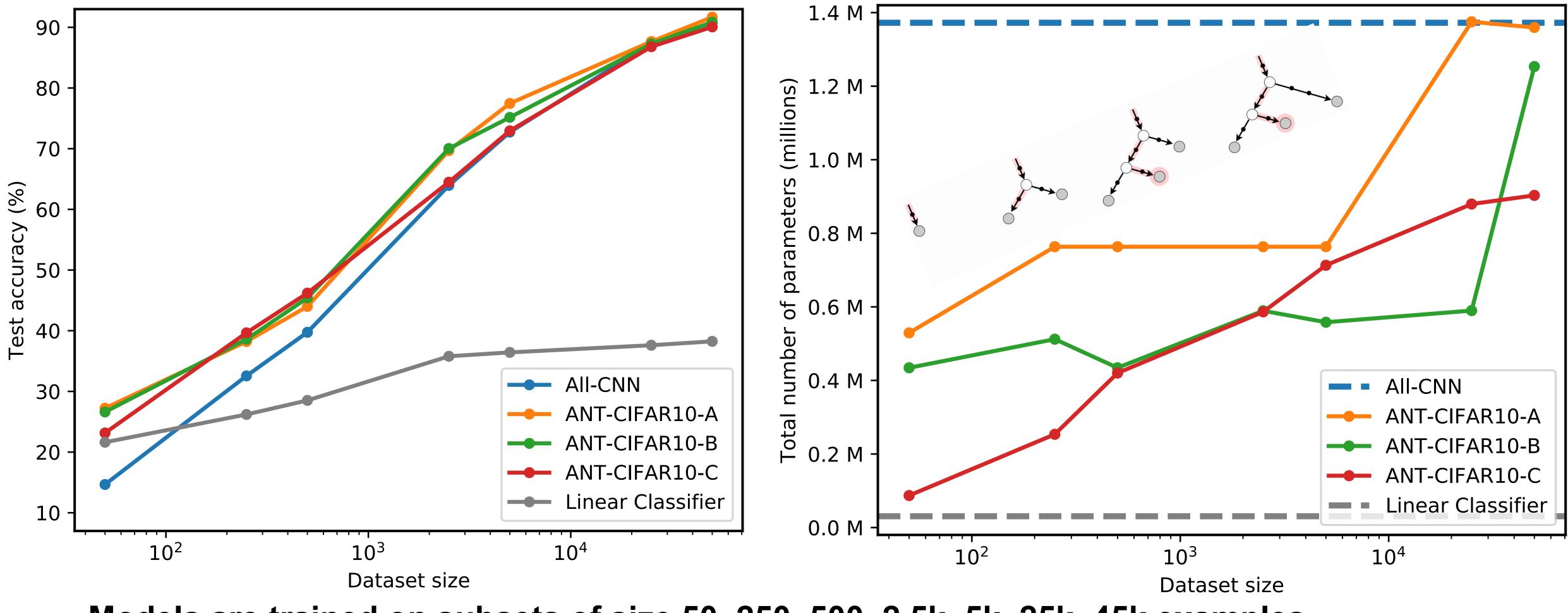
#### **Number of Parameters**





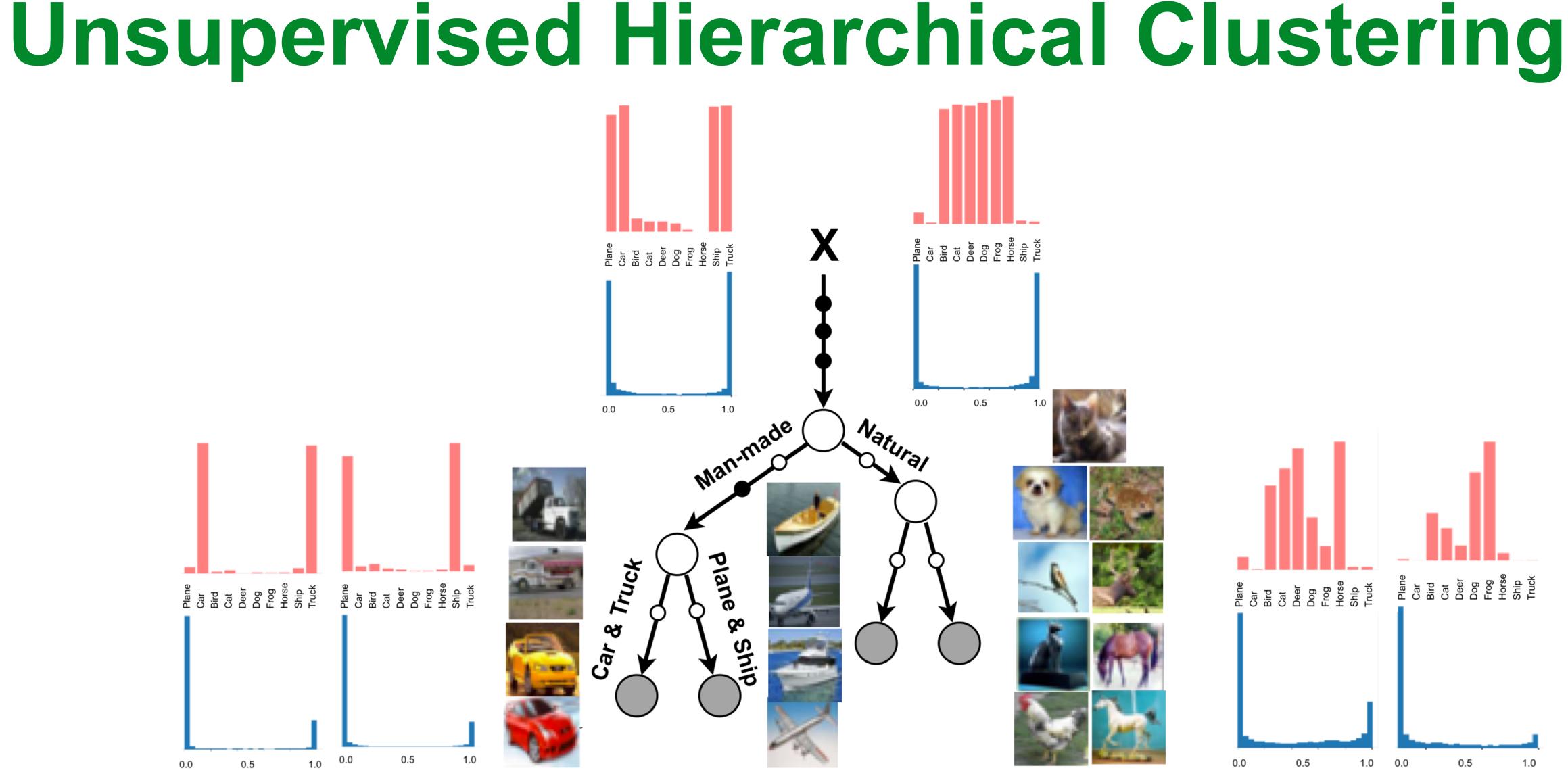
## **Adaptive Model Complexity**

• ANTs can tune the architecture to the availability of training data.





Models are trained on subsets of size 50, 250, 500, 2.5k, 5k, 25k, 45k examples.



#### Please come & see me at poster #82 for details!

