Zeno: Distributed Stochastic Gradient Descent with Suspicion-based Fault-tolerance

Cong Xie, Oluwasanmi Koyejo, Indranil Gupta June 12, 2019

Zeno: distributed synchronous SGD that

- tolerates an arbitrary number of malicious workers
- provides convergence guarantees for non-convex problems

Goal: converge under attacks/failures, regardless of false negative

	Prev.	Ours
Tolerates a majority of malicious workers	No	Yes
Considers the progress of optimization	No	Yes
Tolerates <mark>stealth</mark> adversary (empirically)	No	Yes

Byzantine-tolerant SGD

m workers, distributed SGD: 4: Aggregation Server Pull Bytantine Gradient Coned Gradient Push . . -.: т Byzantine Honest Worke Honest Worker Worker

Main Idea & Results

\star Sort $g_i(x), i \in [m]$ by the Stochastic descent score:

Definition

Stochastic descent score of any update u:

$$Score_{\gamma,\rho}(u,x) = f_r(x) - f_r(x - \gamma u) - \rho ||u||^2,$$

 $f_r(x)$: unbiased estimator of the loss F(x), for validation.

- * Zeno: filter the b "worst" gradients $\frac{1}{m-b}\sum_{i=1}^{m-b} \tilde{v}_{(i)}$, b > q.
- \star Convergence after T iterations:

$$\frac{\sum_{t=0}^{T-1} \mathbb{E} \|\nabla F(x^t)\|^2}{T} \le \mathcal{O}\left(\frac{1}{\sqrt{T}}\right) + \mathcal{O}\left(\frac{(b-q+1)(m-q)}{(m-b)^2}\right)$$