Session: Robust Statistic and Machine Learning

SELFIE: Refurbishing Unclean Samples for Robust Deep Learning

Hwanjun Song⁺, Minseok Kim⁺, Jae-Gil Lee^{+*}

- ⁺ Graduate School of Knowledge Service Engineering, KAIST
- * Corresponding Author

Noisy Label Problem

- Standard Supervised Learning Setting
 - Assume: training data $\{(x_i, y_i)\}_{i=1}^N$,
 - In practical setting, $y_i \rightarrow \widetilde{y}_i$,
 - High cost and time consuming
 - Expert knowledge
 Difficulties of label annotation

y_i: True label

 \widetilde{y}_i : Noisy label

- Unattainable at scale
- Learning with Noisy Label
 - Suffer from poor generalization on test data (VGG-19 on CIFAR-10)

Existing Work: Two Directions

- Loss Correction
 - Modify the loss ${\mathcal L}$ of ${\boldsymbol{all}}$ samples before backward step
 - Suffer from **accumulated noise** by the false correction \rightarrow Fail to handle heavily noisy data
- Sample Selection (Recent direction)
 - Select low-loss (easy) samples as **clean** samples \mathcal{C} for SGD
 - Use only **partial exploration** of the entire training data \rightarrow Ignore useful hard samples classified as unclean

Proposed Method

- SELFIE (<u>SEL</u>ectively re<u>F</u>urb<u>I</u>sh uncl<u>E</u>an samples)
 - Hybrid of loss correction and sample selection
 - Introduce refurbishable samples $\boldsymbol{\mathcal{R}}$
 - The samples can be "corrected with high precision"
 - Modified update equation on mini-batch $\{(x_i, \tilde{y}_i)\}_{i=1}^b$
 - Correct the losses of samples in ${\mathcal R}$
 - Combine them with the losses of samples in $\ensuremath{\mathcal{C}}$
 - Exclude the samples not in $\boldsymbol{\mathcal{R}} \cup \boldsymbol{\mathcal{C}}$

$$\theta_{t+1} = \theta_t - \alpha \nabla \frac{1}{|\mathcal{R} \cup \mathcal{C}|} \left(\sum_{\substack{x \in \mathcal{R} \\ \hline \mathbf{C} \text{ orrected losses}}} \mathcal{L}(x, y^{refurb}) + \sum_{\substack{x \in \mathcal{C} \cap \mathcal{R}^{-1} \\ \hline \mathbf{S} \text{ elected clean losses}}} \mathcal{L}(x, \tilde{y}) \right)$$

Construction of $\,\mathcal{C}\,\,and\,\mathcal{R}\,$

- Clean Samples \mathcal{C} from \mathcal{M} (mini-batch)
 - Adopt loss-based separation (Han et al., 2018)
 - $\mathcal{C} \leftarrow (100 noise \ rate)\%$ of low-loss samples in \mathcal{M}
- Refurbishable Samples ${\mathcal R}$ from ${\mathcal M}$
 - $\mathcal{R} \leftarrow$ the samples with **consistent** label predictions
 - Replace its label into the **most frequently** predicted label $\widetilde{y}_i \rightarrow y_i^{refurb}$

Evaluation: Noise Type

- Synthetic Noise: pair and symmetric
 - Injected two widely used noises
- Realistic Noise

- Built ANIMAL-10N dataset with real-world noise
 - Crawled 5 pairs of confusing animals
 E.g., {(cat, lynx), (jaguar, cheetah),...}
 - Educated 15 participants for one hour
 - Asked the participants to annotate the label

– Summary

# Training	50,000	Resolution	64x64 (RGB)
# Test	5,000	Noise Rate	8% (estimated)
# Classes	10	Data Created	April 2019

https://dm.kaist.ac.kr/datasets/animal-10n

Evaluation: Performance

• Results with two synthetic noises (CIFAR-10, CIFAR-100)

Results with realistic noise (ANIMAL-10N)

Thank you

Further Details or Questions

Poster Session: Pacific Ballroom #157

https://dm.kaist.ac.kr/datasets/animal-10n