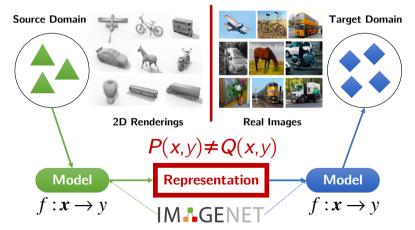
#### Transferability vs. Discriminability: Batch Spectral Penalization for Adversarial Domain Adaptation


#### Xinyang Chen, Sinan Wang, Mingsheng Long, Jianmin Wang

School of Software BNRist, Research Center for Big Data Tsinghua University

International Conference on Machine Learning, 2019

### Transfer Learning: Unsupervised Domain Adaptation

- Non-IID distributions  $P \neq Q$
- Only unlabeled data in target domain



### Adversarial Domain Adaption

Matching distributions across source and target domains s.t.  $P \approx Q$ Adversarial adaptation: learning features indistinguishable across domains

$$\min_{F,G} \mathcal{E}(F,G) + \gamma \operatorname{dis}_{P \leftrightarrow Q}(F,D)$$

$$\max_{D} \operatorname{dis}_{P \leftrightarrow Q}(F,D),$$

We analysis features extracted by  $DANN^1$  with a ResNet-50<sup>2</sup> pretrained on Imagenet

$$\mathcal{E}(F,G) = \mathbb{E}_{(\mathbf{x}_{i}^{s},\mathbf{y}_{i}^{s})\sim P} L(G(F(\mathbf{x}_{i}^{s})),\mathbf{y}_{i}^{s})$$
  
dist\_{P\leftrightarrow Q}(F,D) =  $\mathbb{E}_{\mathbf{x}_{i}^{s}\sim P} \log[D(\mathbf{f}_{i}^{s})]$   
+  $\mathbb{E}_{\mathbf{x}_{i}^{t}\sim Q} \log[1 - D(\mathbf{f}_{i}^{t})]$  (2)

<sup>1</sup>Ganin et al. Unsupervised domain adaptation by backpropagation. ICML '15. <sup>2</sup>He et al. Deep residual learning for image recognition. CVPR '15.

X. Chen et al. (Tsinghua Univ.)

BSP: Batch Spectral Penalization

(1)

### Discriminability of Feature Representations

Two key criteria that characterize the goodness of feature representations

- Transferability: the ability of feature to bridge the discrepancy across domains
- Discriminability: the easiness of separating different categories by a supervised classifier trained over the feature representations

Discriminability of features extracted by DANN, worse discriminability is found:

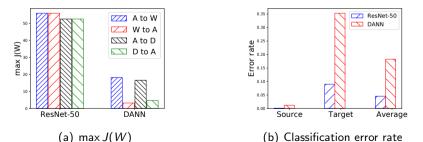
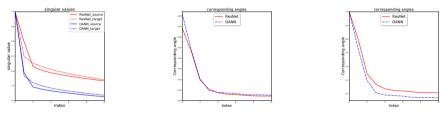




Figure: Analysis of discriminability of feature: (a) LDA, (b) MLP.

X. Chen et al. (Tsinghua Univ.)

## Why Discriminability Is Weakened?

• Corresponding Angles: corresponding angle is the angle between two eigenvectors corresponding to the same singular value index, which are equally important in their feature matrices.



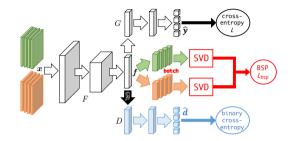

(b)  $\cos(\psi)$  (c)  $\cos(\psi)$ 

Figure: SVD analysis. We compute (a) the singular values (normalized version); (b) corresponding angles (unnormalized version); (c) corresponding angles (normalized version). In normalized version we scale all values so that the largest value is 1.

• Only the eigenvectors with largest singular values tend to carry transferable knowledge

(a)  $\sigma$ 

#### **BSP:** Batch Spectral Penalization



BSP combined with DANN to strengthen discriminability of feature  $\min_{F,G} \mathcal{E}(F, G) + \gamma \operatorname{dis}_{P \leftrightarrow Q}(F, D) + \beta L_{\operatorname{bsp}}(F)$ (3)  $\max_{D} \operatorname{dis}_{P \leftrightarrow Q}(F, D),$   $L_{\operatorname{bsp}}(F) = \sum_{i=1}^{k} (\sigma_{s,i}^{2} + \sigma_{t,i}^{2}),$ (4)

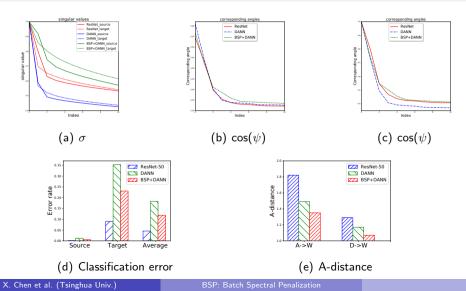

#### Results

Table: Accuracy (%) on Office-31 for unsupervised domain adaptation

| Method              | $A\toW$               | $D\toW$               | $W\toD$                    | $A\toD$               | $D\toA$               | $W\toA$               | Avg  |
|---------------------|-----------------------|-----------------------|----------------------------|-----------------------|-----------------------|-----------------------|------|
| ResNet-50           | $68.4\pm0.2$          | $96.7\pm0.1$          | $99.3\pm0.1$               | $68.9\pm0.2$          | $62.5\pm0.3$          | $60.7\pm0.3$          | 76.1 |
| DAN                 | $80.5\pm0.4$          | $97.1\pm0.2$          | $99.6\pm0.1$               | $78.6\pm0.2$          | $63.6\pm0.3$          | $62.8\pm0.2$          | 80.4 |
| DANN                | $82.0\pm0.4$          | $96.9\pm0.2$          | $99.1\pm0.1$               | $79.7\pm0.4$          | $68.2\pm0.4$          | $67.4\pm0.5$          | 82.2 |
| JAN                 | $85.4\pm0.3$          | $97.4\pm0.2$          | $99.8\pm0.2$               | $84.7\pm0.3$          | $68.6\pm0.3$          | $70.0\pm0.4$          | 84.3 |
| GTA                 | $89.5\pm0.5$          | $97.9\pm0.3$          | $99.8\pm0.4$               | $87.7\pm0.5$          | $72.8\pm0.3$          | $71.4\pm0.4$          | 86.5 |
| CDAN                | $93.1\pm0.2$          | $98.2\pm0.2$          | $\textbf{100.0}\pm0.0$     | $89.8\pm0.3$          | $70.1\pm0.4$          | $68.0\pm0.4$          | 86.6 |
| CDAN+E              | $\textbf{94.1}\pm0.1$ | $\textbf{98.6}\pm0.1$ | $\textbf{100.0} \pm 0.0$   | $92.9\pm0.2$          | $71.0\pm0.3$          | $69.3\pm0.3$          | 87.7 |
| BSP+DANN (Proposed) | $93.0\pm0.2$          | $98.0\pm0.2$          | $\textbf{100.0}\pm0.0$     | $90.0\pm0.4$          | $71.9\pm0.3$          | $\textbf{73.0}\pm0.3$ | 87.7 |
| BSP+CDAN (Proposed) | $93.3\pm0.2$          | $98.2\pm0.2$          | $\boldsymbol{100.0}\pm0.0$ | $\textbf{93.0}\pm0.2$ | $\textbf{73.6}\pm0.3$ | $72.6\pm0.3$          | 88.5 |

Experiments

### Analysis



June 12, 2019 8 / 9

# **Thanks!** Poster: tonight at Pacific Ballroom #256