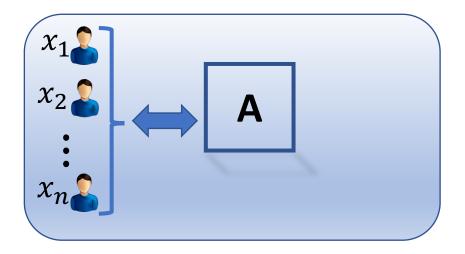
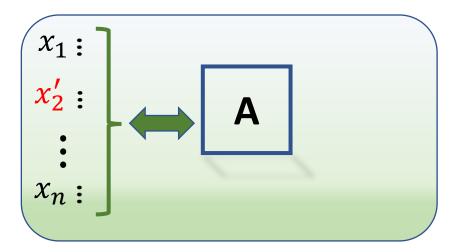
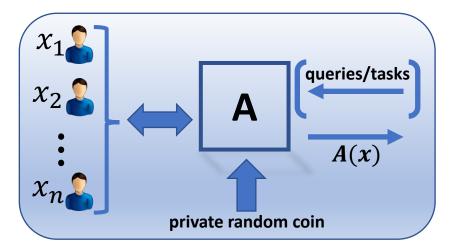
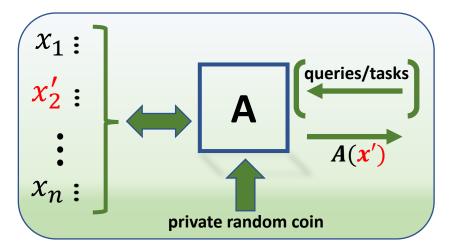
Sublinear Space Private Algorithms Under the Sliding Window Model

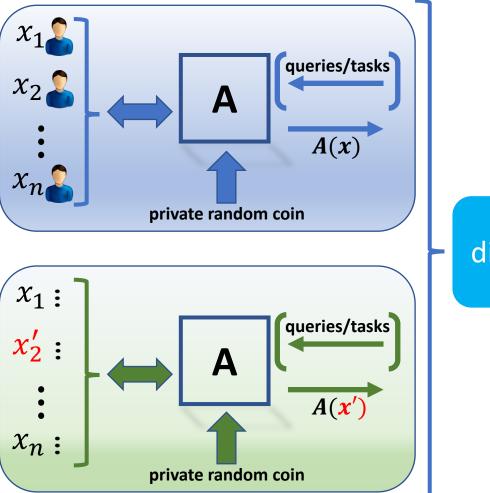
Jalaj Upadhyay



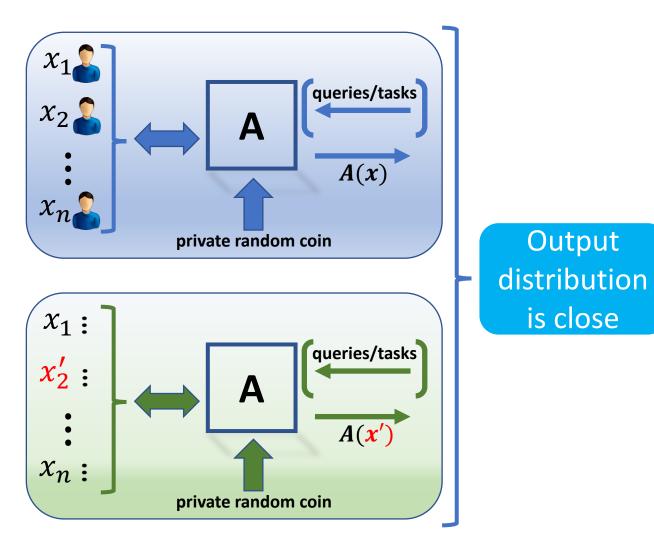




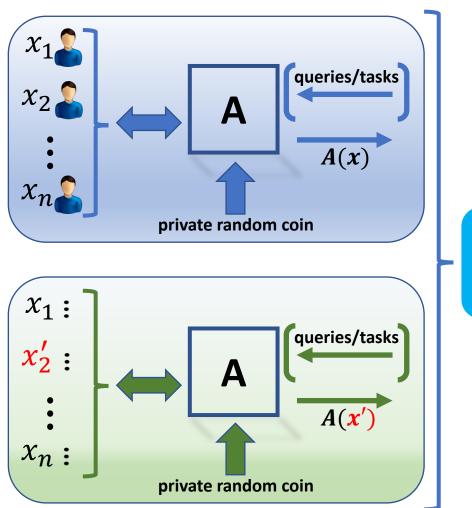




Output distribution is close



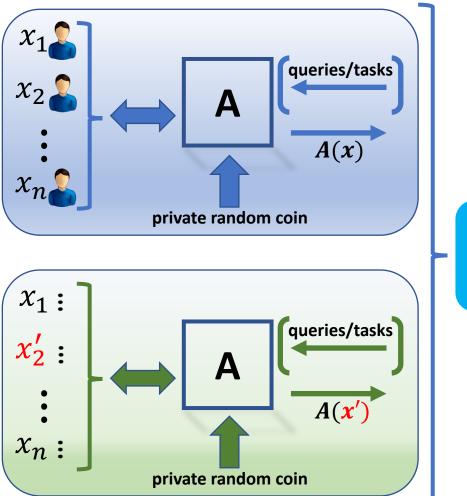
x and *x*' are *neighbor* if they differ in one data point



Output distribution is close *x* and *x*' are *neighbor* if they differ in one data point

Differential Privacy [DMNS06] Algorithm A is α -differentially private if

- for all neighboring data sets x and x'
- for all possible outputs S, $Pr[A(\mathbf{x}) \in S] \le e^{\alpha} \cdot Pr[A(\mathbf{x'}) \in S]$

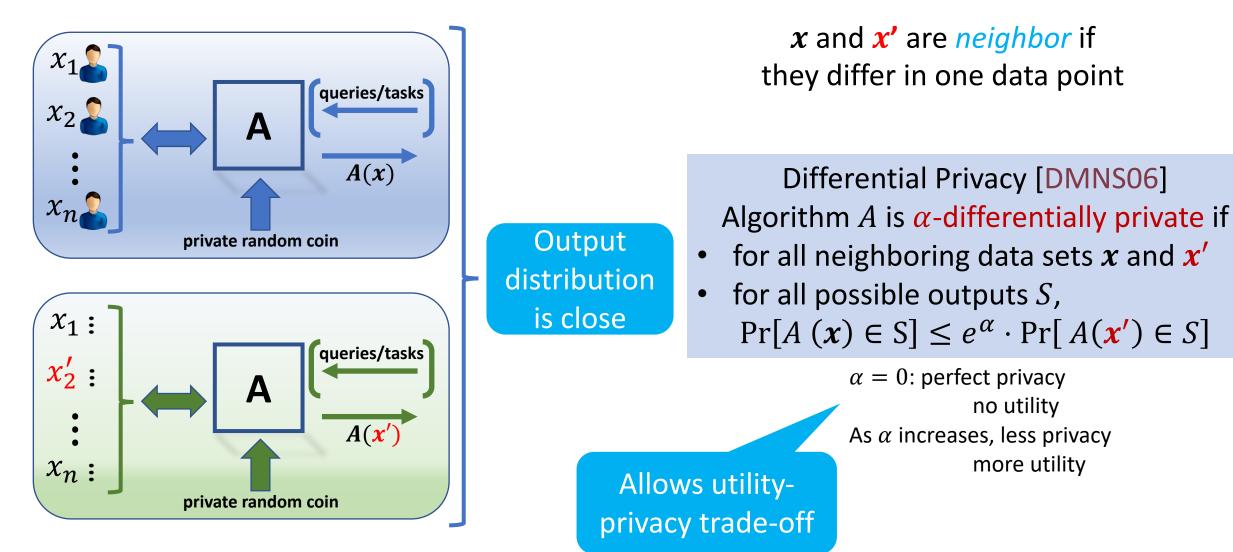


Output distribution is close *x* and *x*' are *neighbor* if they differ in one data point

Differential Privacy [DMNS06] Algorithm A is α -differentially private if

- for all neighboring data sets x and x'
- for all possible outputs *S*, $Pr[A(\mathbf{x}) \in S] \le e^{\alpha} \cdot Pr[A(\mathbf{x'}) \in S]$

 $\alpha = 0$: perfect privacy no utility As α increases, less privacy more utility



Differential Privacy Under Sliding Window

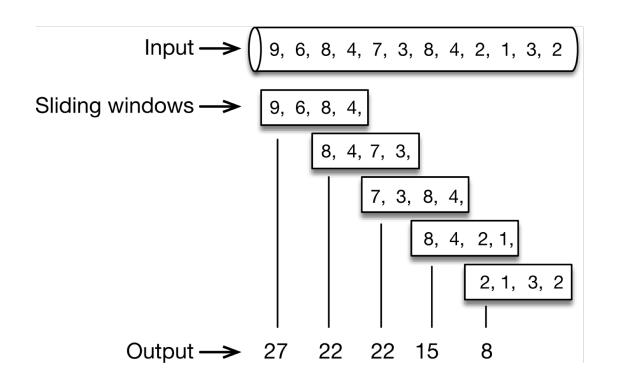
• Differential privacy overview of Apple

"Apple retains the collected data for a maximum of three months"

Differential Privacy Under Sliding Window

Differential privacy overview of Apple

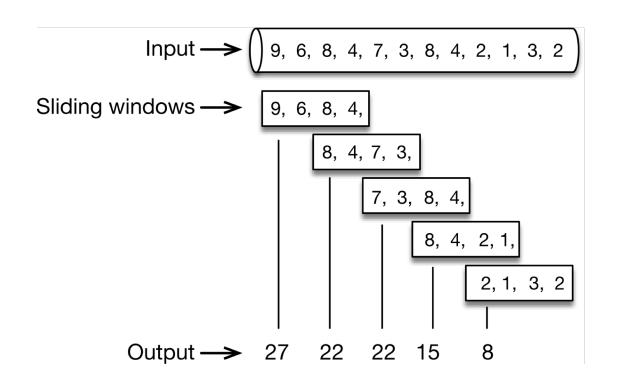
"Apple retains the collected data for a maximum of three months"



Differential Privacy Under Sliding Window

• Differential privacy overview of Apple

"Apple retains the collected data for a maximum of three months"



Goal of this paper

- Formalize privacy under sliding window model
- Design sublinear space private algorithms in the sliding window model

Problem Studied: Private ℓ_1 heavy hitters

- *x* be an *n*-dimensional vector
- Output all indices $i \in [n]$, $x_i \ge \phi \parallel x \parallel_1$ and estimate of x_i
- Allowed to accept $i \in [n]$ if $x_i \ge (\phi \rho) \parallel x \parallel_1$

Problem Studied: Private ℓ_1 heavy hitters

- *x* be an *n*-dimensional vector
- Output all indices $i \in [n]$, $x_i \ge \phi \parallel x \parallel_1$ and estimate of x_i
- Allowed to accept $i \in [n]$ if $x_i \ge (\phi \rho) \parallel x \parallel_1$

Main Theorem

There is an efficient o(w) space (ϵ, δ) -DP algorithm that returns a set of indices, \mathcal{I} , and estimates \hat{x}_i for $i \in \mathcal{I}$,

- If $x_i \ge \phi \parallel x \parallel_1$, then $|x_i \hat{x}_i| \le \rho \parallel x \parallel_1 + O\left(\frac{1}{\epsilon}\log w\right)$
- Does not include any *i* if $x_i < (\phi 3\rho) \parallel x \parallel_1 + O\left(\frac{\phi}{\epsilon}\log w\right)$

Problem Studied: Private ℓ_1 heavy hitters

- *x* be an *n*-dimensional vector
- Output all indices $i \in [n]$, $x_i \ge \phi \parallel x \parallel_1$ and estimate of x_i
- Allowed to accept $i \in [n]$ if $x_i \ge (\phi \rho) \parallel x \parallel_1$

Main Theorem

There is an efficient o(w) space (ϵ, δ) -DP algorithm that returns a set of indices, \mathcal{I} , and estimates \hat{x}_i for $i \in \mathcal{I}$,

- If $x_i \ge \phi \| x \|_1$, then $|x_i \hat{x}_i| \le \rho \| x \|_1 + O\left(\frac{1}{\epsilon}\log w\right)$
- Does not include any *i* if $x_i < (\phi 3\rho) \| x \|_1 + O\left(\frac{\phi}{\epsilon} \log w\right)$

Price of privacy

Other Results and Open Problems

- Algorithm extends to continual observation under sliding window
- Current non-private framework do not extend to privacy
 - Lower bound using standard packing argument
- Space lower bound on estimating ℓ_1 -heavy hitters
 - Reduction to communication complexity problem

Other Results and Open Problems

- Algorithm extends to continual observation under sliding window
- Current non-private framework do not extend to privacy
 - Lower bound using standard packing argument
- Space lower bound on estimating ℓ_1 -heavy hitters
 - Reduction to communication complexity problem

Characterize what is possible to compute privately under the sliding window model