White-box vs Black-box: Bayes Optimal Strategies for Membership Inference

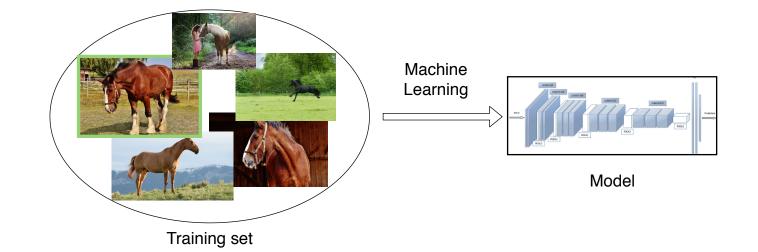
<u>Alexandre Sablayrolles</u>, Matthijs Douze, Yann Ollivier, Cordelia Schmid, Hervé Jégou

Facebook AI Research, Paris

June 11th, 2019

Context: Membership Inference

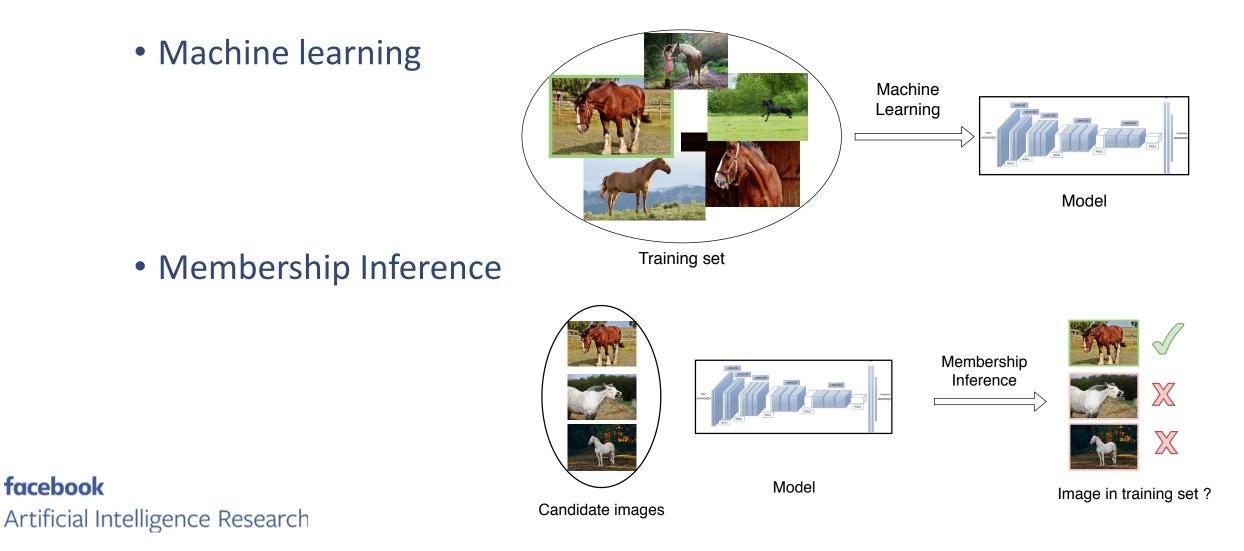
• Machine learning



facebook Artificial Intelligence Research

 \mathbf{X}

. Context: Membership Inference



Membership Inference

• Black-box

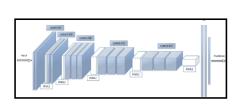
• White-box

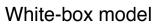
Black-box model

Membership Inference

	\checkmark
	\mathbb{X}
	X
Image in tr	aining set
<u> </u>	

 \bigcap





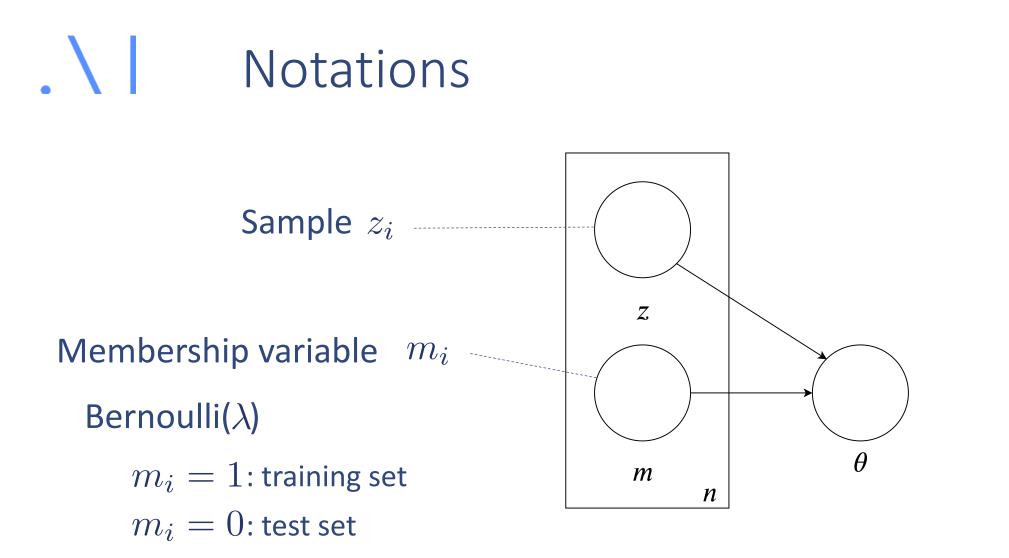
Membership Inference

 \mathbb{X}

Image in training set ?

• Give a formal framework for membership attacks

- What is the best possible attack (asymptotically) ?
- Compare white-box vs black-box attacks
- Derive new membership inference attacks



facebook

Notations and assumptions

membership

loss

• Assumption: posterior distribution $\mathbb{P}(\theta \mid m_{1:n}, z_{1:n}) \propto \exp\left(-\frac{1}{T}\sum_{i=1}^{n} m_i \ell(\theta, z_i)\right)$

• Temperature T represents stochasticity

- T=1: Bayes
- T->0: Average SGD, MAP inference

facebook Artificial Intelligence Research

. Formal results: optimal attack

• Membership posterior:

$$\mathcal{M}(\theta, z_1) := \mathbb{P}(m_1 = 1 \mid \theta, z_1)$$
• Result
$$\mathcal{M}(\theta, z_1) = \mathbb{E}_{\mathcal{T}} \left[\sigma \left(\underbrace{s(z_1, \theta, p_{\mathcal{T}})}_{\text{II}} + t_{\lambda} \right) \right]_{\text{II}} \left(\underbrace{t_1 - t_2}_{\text{II}} - t_2(\theta, z_1) \right) \log \left(\frac{\lambda}{1 - \lambda} \right)$$

Formal results: optimal attack

• Membership posterior:

$$\mathcal{M}(\theta, z_1) := \mathbb{P}(m_1 = 1 \mid \theta, z_1)$$
• Result
$$\mathcal{M}(\theta, z_1) = \mathbb{E}_{\mathcal{T}} \left[\sigma \left(\underbrace{s(z_1, \theta, p_{\mathcal{T}})}_{\parallel} + t_{\lambda} \right) \right]_{\parallel} \right]$$

$$\frac{1}{T} \left(\tau_{p_{\mathcal{T}}}(z_1) - \underbrace{\ell(\theta, z_1)}_{\log} \log \left(\frac{\lambda}{1 - \lambda} \right) \right)$$

Only depends on θ through evaluation of the loss!

facebook

Approximation strategies

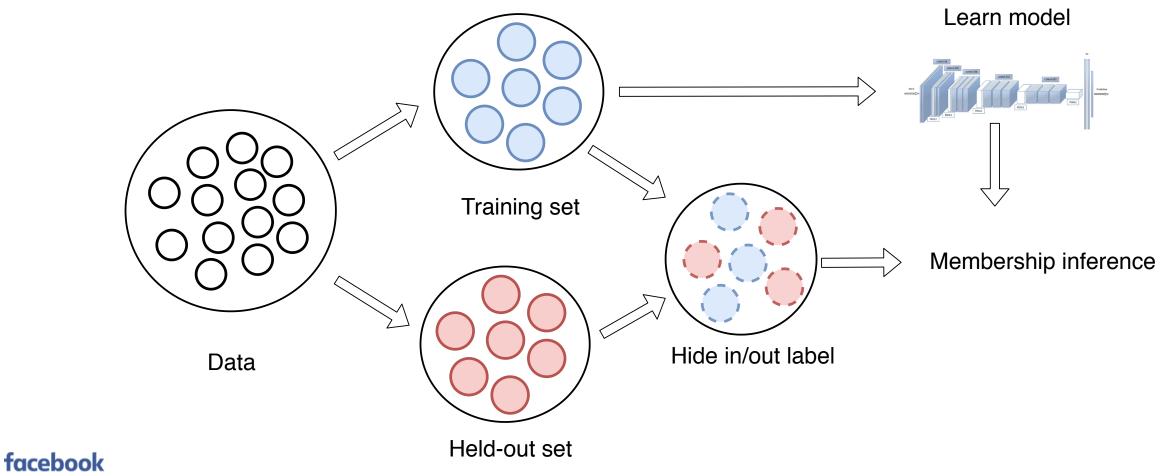
- MALT: a global threshold for all samples $s_{
 m MALT}(heta,z_1)=-\ell(heta,z_1)+ au$
- MAST: compute a threshold for each sample

$$s_{\text{MAST}}(\theta, z_1) = -\ell(\theta, z_1) + \tau(z_1)$$

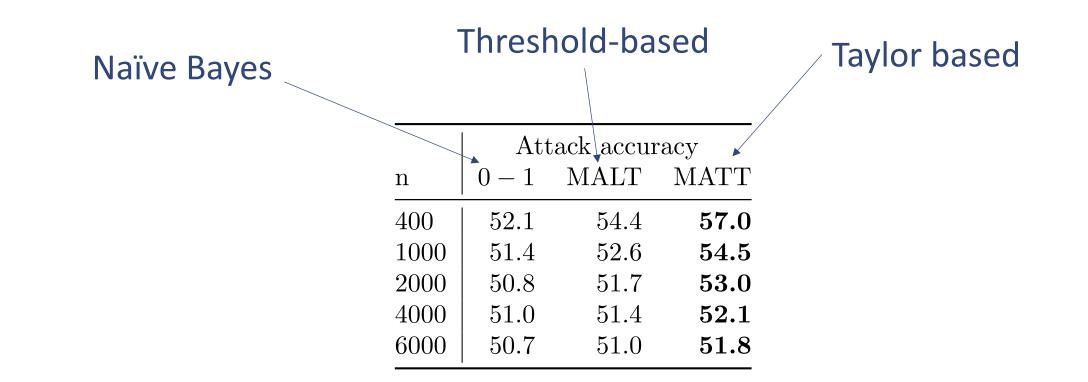
• MATT: simulate influence of sample using Taylor approximation

$$s_{\text{MATT}}(\theta, z_1) = -(\theta - \theta_0^*)^T \nabla_{\theta} \ell(\theta_0^*, z_1)$$

facebook



Membership inference on CIFAR



=> MATT outperforms MALT

facebook

Comparison with the state of the art

Method	Attack accuracy	
Naïve Bayes (Yeom et al. [2018])	69.4	
Shadow models (Shokri et al. [2017])	73.9	
Global threshold	77.1	
Sample-dependent threshold	77.6	

=> State-of-the-art performance

=> Less computationally expensive

facebook

Large-scale experiments on Imagenet

Model	Augmentation	0-1	MALT
Resnet101	None Flip, Crop ± 5 Flip, Crop	$76.3 \\ 69.5 \\ 65.4$	$90.4 \\ 77.4 \\ 68.0$
VGG16	None Flip, Crop ± 5 Flip, Crop	77.4 71.3 63.8	$90.8 \\ 79.5 \\ 64.3$

=> Data augmentation decreases membership attacks accuracy

facebook Artificial Intelligence Research

- Black-box attacks as good as white-box attacks
- Our approximations for membership attacks are state-of-the-art on two datasets

White-box vs Black-box: Bayes Optimal Strategies for Membership Inference

Poster 172

<u>Alexandre Sablayrolles</u>, Matthijs Douze, Yann Ollivier, Cordelia Schmid, Hervé Jégou

Facebook AI Research, Paris

June 20th, 2018