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• Existing techniques for inference either don’t scale or don’t 
extract the most utility from the private observations


• Proper inference has many benefits:


• Resolves inconsistencies


• Improves utility


• Answers new queries


• Supports synthetic data generation
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Problem Statement

• Given: 
 an unknown discrete data distribution p ∈ ℝn  

 a query matrix Q ∈ ℝm x n 

• Our observation model is: 
 

• We want to recover an estimate of p from y

y = Qp + ε

ε ∼ Laplace( ΔQ
ϵ )

ε ∼ Gaussian( ΔQ
ϵ

2 log(2/δ))
ε ∼ Laplace(σ)
ε ∼ Gaussian(σ)

p̂ ∈ arg min
p∈S

∥Qp − y∥

Random Laplace or 

Gaussian noise

Size of p is intractably large



Approach

• Reformulate problem to find a graphical model pθ instead  
 
 
 
 

• If Q only depends on p though its marginals, 


• We can solve this problem efficiently


• Solution to reformulated problem is the maximum 
entropy solution to the original problem

̂θ ∈ arg min
θ

∥Qpθ − y∥
Much smaller than p



Scalability Improvements of PGM

ε ∼ Laplace( ΔQ
ϵ )

ε ∼ Gaussian( ΔQ
ϵ

2 log(2/δ))
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• Graphical-model inference scales much better than 
traditional approaches.

PGM scales to 
1000 dimensions

Traditional approaches 
fail at 10 dimensions
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Utility Improvements of PGM

ε ∼ Laplace( ΔQ
ϵ )

ε ∼ Gaussian( ΔQ
ϵ

2 log(2/δ))

• Graphical-model inference improves the utility of several 
state-of-the-art privacy mechanisms.

Error reduction 
up to 6X

We offer similar improvements for DualQuery, 
HDMM, and MWEM as well (see poster)
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ε ∼ Gaussian( ΔQ
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Code available on GitHub:  
https://github.com/ryan112358/private-pgm 

https://github.com/ryan112358/private-pgm

