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Motivation - Macrocephaly
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• Head circumference (cm) as a function of age (days)
• Cases (left) vs subset of controls (right)
• Electronic medical records, 74,000 children (only 85 cases)
• Up to 3 years of age, varying observations per child (1-20+)
• Binary response indicating presence of pathologies related to
Macrocephaly (large heads)
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Motivation - INSIGHT
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INSIGHT is an ongoing study led by Dr. Ian Paul’s Lab at Penn State Hershey,
with microbiome and genetic data processed by Dr. Kateryna Makova’s lab at
Penn State. Features of the data include
• over 200 children and growing (family/siblings)
• 7 clinical visits over two years
• bacterial abundances in the gut and mouth
• recently genotyped families.
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Motivation - ADAPT

ADAPTa is an ongoing study let by Dr. Mark Shriver’s lab at Penn State.
Features of the data include
• over 6000 faces and growing
• 7150 points per face, as x,y,z coordinates
• demographic variables measured for each subject
• nearly 3000 subjects genotyped and growing (most with 1M+ snps).

aAnthropology, DNA, and the Appearance and Perception of Traits
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Functional Data Models

Models are usually defined off of the complete trajectories, though they might
be estimated from incomplete (called sparsely sampled) data.
• Mean + Covariance only

E[Xi (t)] = µ(t) Cov(Xi (t),Xi (s)) = C(t, s).

• Function-on-scalar regression

E[Xi (t)|Zi ] = α(t) + β(t)Zi .

• Scalar-on-function regression

E[Zi |{Xi (t) : t ∈ T }] = α +
∫
T
β(t)Xi (t) dt.

And there are many many more. The major idea is that certain variables and
parameters can be viewed as functions. Our goal is to develop tools for
constructing differentially private output for such objects; today we focus on
the mean function.
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DP Setup (Dwork, McSherry, Nissim, and Smith, 2006)

Here we follow a classic setup for (ε,δ) differential privacy.
• D: population of units.
• Dn: collection of all subsets of D of size n.
• f : Dn → H is a summary and H is a real separable Hilbert space.
• f̃ : Dn → H is a privatized version of f (and random).

We say that f̃ achieves (ε-δ) differential privacy if for any two samples
Dn,D′n ∈ Dn that differ in only one record/unit, Dn ∼ D′n, we have

P(f̃ (Dn) ∈ A) ≤ eεP(f̃ (D′n) ∈ A) + δ for all measurable A.

The primary challenge here is that H can be (in our case usually is) infinite
dimensional, and thus the A are collections of functions.
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Previous Works

• Hall, Rinaldo, and Wasserman (2013): release finite number of function
evaluations; based on RKHS and Gaussian noise.
• Holohan, Leith, and Mason (2015): DP in abstract metric spaces
assuming a sanitized database.
• Aldá and Rubinstein (2017): Function release based on Bernstein
polynomials and Laplace noise.
• Smith, Alvarez, Zwiessele, Lawrence (2018): Examined how to tailor the
noise in the Hall et al (2013) framework.
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Gaussian Noise

Definition
We say that Z ∈ H is a Gaussian noise if, for any h ∈ H we have that 〈h,Z〉 is
normal in R.

A classic result from probability theory states that for any Z there exists µ ∈ H
and a positive definite nuclear operator C such that

〈h,Z〉 ∼ N (〈µ, h〉, 〈Ch, h〉).

We thus denote Z ∼ N (µ,C). Using the same strategy as Hall et al (2013) we
use the following mechanism

f̃ (Dn) = f (Dn) + σZ ,

where δ is some constant. However, there are some issues that arise when H is
infinite dimensional.
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Compatibility

However, not just any noise can be chosen, even if the covariance operator, C ,
has full rank. Let K ⊂ H consist of all elements h such that 〈C−1h, h〉 <∞.
Equipped with the inner product 〈·, ·〉K = 〈C−1·, ·〉, K is also a Hilbert space.

Definition (Mirshani, R, and Slavkovic, 2019)
We say a summary f is compatible with a noise N (0,C) if f (Dn) is in the
Hilbert Space, K, generated by C for all Dn.

The major problem is that without compatibility, it is possible to “project” the
noise out of the summary.

Theorem (Mirshani, R, and Slavkovic, 2019)
If f is not compatible with N (0,C), then there exists no σ ∈ R such that
f̃ (Dn) := f (Dn) + σZ achieves DP in H.
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Global Sensitivity

In the infinite dimensional setting, it does not appear possible to define a
notion of global sensitvity that doesn’t explicitly take into acount the noise.

Definition (Hall, Rinaldo, and Wasserman (2013))
The global sensitivity of a summary f with respect to noise N (0,C) is given by

∆2 := sup
Dn∼D′

n

‖f (Dn)− f (D′n)‖2
K,

where ‖ · ‖K is the inner product norm over K.

Theorem (Hall, Rinaldo, and Wasserman, 2013)
If f (Dn) is a real valued function over an interval T , denoted as fDn (t), then

(fDn (t1) + σZ(t1), . . . , fDn (tm) + σZ(tm))

achieves (ε, δ) DP in Rm for any choice of {ti} and any finite m if

σ2 = 2 log(2/δ)
ε2 ∆2.
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More General Formulation
This result can be extended much more generally.

Theorem (Mirshani, R, and Slavkovic, 2019)
If f (Dn) ∈ H then

(〈fDn + δZ , h1〉, . . . , 〈fDn + δZ , hm〉)

achieves ε-δ DP in Rm for any choice of {hi ∈ H} and any finite m if

σ2 = 2 log(2/δ)
ε2 ∆2.

And we can even obtain it for the entire process.

Theorem (Mirshani, R, and Slavkovic, 2019)
If f (Dn) ∈ H then

f̃ (Dn) = f (Dn) + σZ

achieves ε-δ DP in H if
σ2 = 2 log(2/δ)

ε2 ∆2.
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Theoretical Tools

Our work is buil upon classic results from the 1960s and 1970s concerning the
equivalence/orthogonality of Gaussian measures.

Theorem (Bogachev, 1998)
Let P1 and P2 be two Gaussian measures over a separable Hilbert space, H,
with means/covariances (µ1,C) and (µ2,C) respectively, and assume C has full
rank. Then the two meausres are equivalent (in a probablistic sense) if

‖C−1/2(µ1 − µ2)‖2
H <∞,

and orthogonal otherwise.

With equivalent measures, you can also define densities for the Gaussian
processes. Proving our results then depends on using these densities to extend
arguments/bounds from the multivariate setting.
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Example - Mean Function Estimation

Let Xi (t) be an iid sample from H = L2[0, 1] with ‖Xi‖H ≤ τ . Define
µ(t) = E[Xi (t)] and let C(t, s) be a continuous positive definite function. Then
the K is a reproducing kernel Hilbert space with kernel C . We can estimate µ
using

µ̂ := argminµ∈H
1
n

n∑
i=1

‖Xi − µ‖2
H + φ‖C−η/2µ‖2

H.

Theorem (Mirshani, R, and Slavkovic (2017))
The estimator µ̂ has a global sensitivity bounded by

∆2 ≤ τ 2

n2φ1/η .

If the tuning parameter is taken such that φ� n−η then the privacy noise is
asymptotally negligible

‖µ̃− µ̂‖2
H = oP(n−1).
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Numerical Illustration - Corpus Callusum

One nice aspect is that one can choose the noise N (0,C) and by forcing the f
to lie in K one can oversmooth a bit to dramatically reduce the noise one has
to add to achieve DP. Below are 3 different kernels: exponential, Gaussian,

Matern (3/2) respectively.
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Overall Conclusions

• Lot’s of interesting challenges for privacy with highly complex objects.
• In high/infinite dimensional settings, careful regularization appears key to
maintaining utility.
• Main privacy challenge seems to reside in the “higher frequencies” of the
processes.
• Lack of densities in infinite dimensional settings produces a substantial
hurdle.
• Paper considers more general Banach spaces as well.

Thank you for your time!
www.personal.psu.edu/~mlr36
mreimherr@psu.edu
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