# **Neural Joint Source-Channel Coding**

Kristy Choi, Kedar Tatwawadi, Aditya Grover, Tsachy Weissman, Stefano Ermon

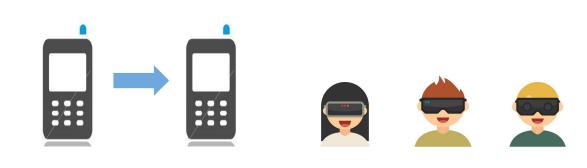
Computer Science Department, Stanford University



## **Motivation**

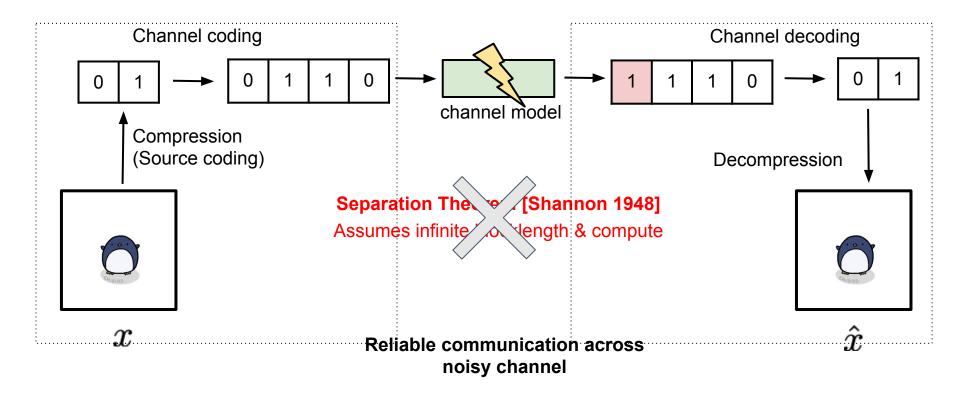
Reliable, robust, and efficient information transmission is key for everyday communication



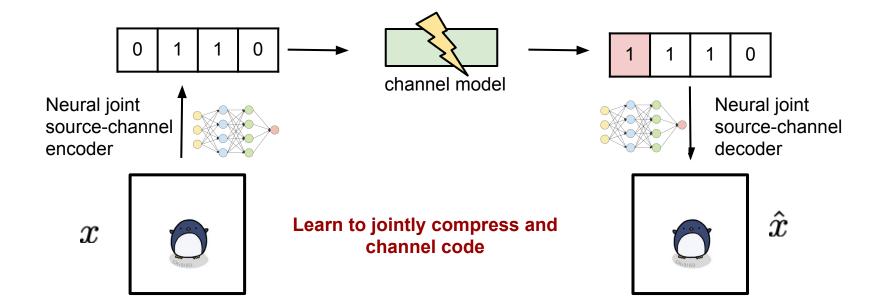




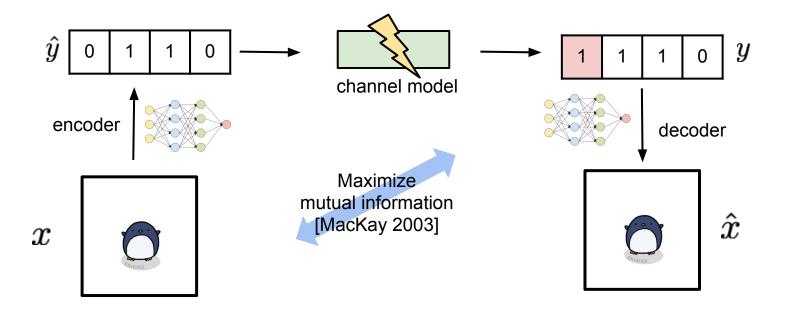
#### **Problem Statement**



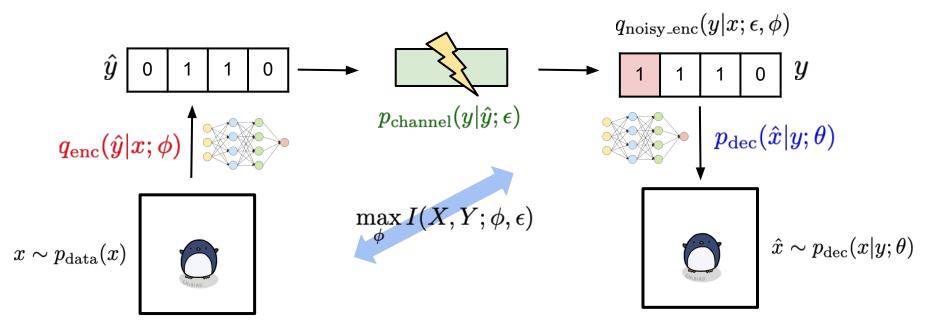
#### **Neural Joint Source-Channel Coding**



#### **NECST Model**



## **Coding Process**



 $p(x, \hat{y}, y, \hat{x}) = p_{\text{data}}(x) \boldsymbol{q}_{\text{enc}}(\hat{y}|x; \boldsymbol{\phi}) p_{\text{channel}}(y|\hat{y}; \boldsymbol{\epsilon}) \boldsymbol{p}_{\text{dec}}(\hat{x}|y; \boldsymbol{\theta})$ 

# **Learning Objective**

- <u>Mutual information maximization</u>
  - Y should capture as much information about X as possible, even after corruption!
  - Estimation is hard 😕 [Barber & Agakov 2004]
- Variational lower bound is nicer:

 $\max_{\phi}$ 

$$I(X, Y; \phi, \epsilon) = \max_{\phi} H(X) - H(X|Y; \phi, \epsilon)$$
  

$$\geq \max_{\theta, \phi} \mathbb{E}_{x \sim p_{\text{data}}(x)} \mathbb{E}_{y \sim q_{\text{noisy-enc}}(y|x; \epsilon, \phi)[\log p_{\text{dec}}(x|y; \theta)]}$$
  
[Kingma & Welling 2014]

**Reconstruction loss!** 

[Vincent 2008]

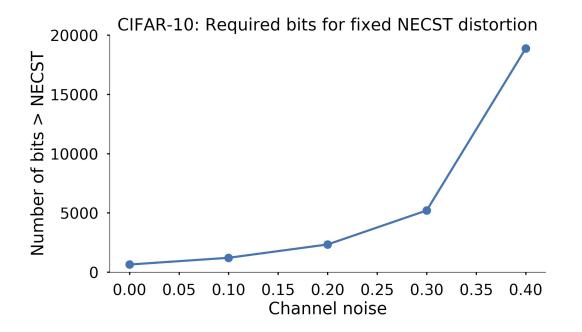
### **Optimization Procedure**

- Our latent variables y are discrete
- Use VIMCO: [Mnih and Rezende 2016]
  - Draw multiple (*K*) samples from inference network, get tighter lower bound

$$\mathcal{L}^{K}(\phi,\theta;x,\epsilon) = \sum_{x \in \mathcal{D}} \mathbb{E}_{y^{1:K} \sim q_{\text{noisy-enc}}(y|x;\epsilon,\phi)} \left[ \frac{1}{K} \sum_{i=1}^{K} p_{\text{dec}}(x|y^{i};\theta) \right]$$

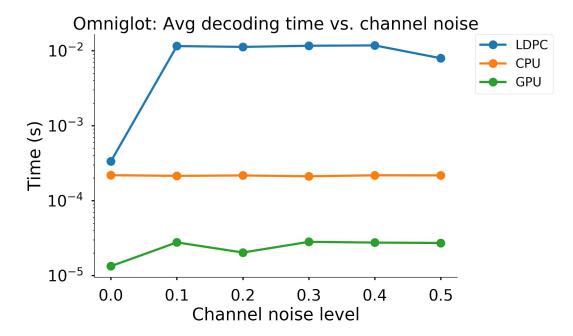
$$\uparrow$$
Multiple samples of y
$$Multiple reconstruction loss terms$$

#### Fixed Rate: Comparison vs. Ideal Codes



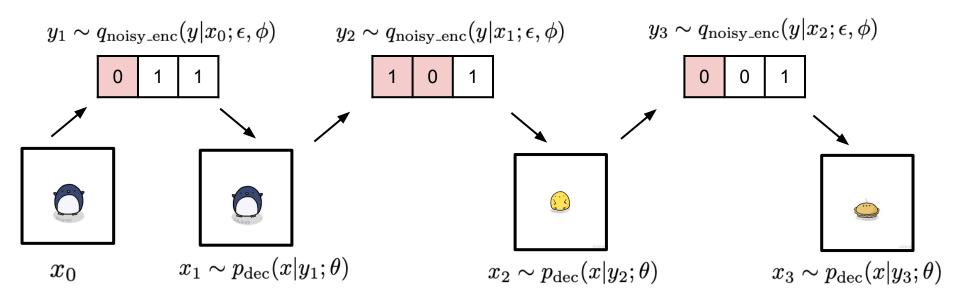
We need a much smaller number of bits to get the same level of distortion, even vs. WebP [Google 2010] + ideal channel code

## **Extremely Fast Decoding**



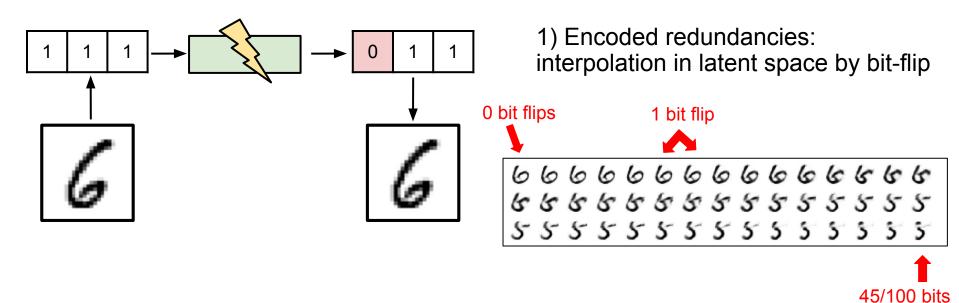
Up to 2x orders of magnitude in speedup on GPU vs. LDPC decoder [Gallager 1963]

#### Learning the Data Distribution



<u>Theorem (informal)</u>: NECST learns an implicit model of  $p_{data}(x)$ 

## **Robust Representation Learning**



2) Improved downstream classification: improves accuracy by as much as 29% across variety of classifiers when inputs are corrupted by noise!

## Summary

- End-to-end deep generative modeling framework for the JSCC problem
- Better bitlength efficiency than separation scheme on CIFAR10, CelebA, SVHN
- Another way to learn robust latent representations
- Get an extremely fast decoder for free

#### Thanks!



Kedar Tatwawadi



Aditya Grover



Tsachy Weissman



Stefano Ermon

Contact: <u>kechoi@stanford.edu</u>

Code: https://github.com/ermongroup/necst

Poster #165: Tuesday, June 11th @ Pacific Ballroom