Inference and Sampling of K₃₃-free Ising Models

Valerii Likhosherstov¹, Yury Maximov^{1,2}, Michael Chertkov^{1,2,3}

 ¹ Skolkovo Institute of Science and Technology, Moscow, Russia
² Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, USA
³ Graduate Program in Applied Mathematics, University of Arizona, Tucson, AZ, USA

June 11, 2019

For a graph G = (V, E), |V| = N, **zero-field Ising model** is a distribution over $S \in \{-1, +1\}^N$ defined as

$$\mathbb{P}(S=X) = \frac{1}{Z} \exp\left(\sum_{e=\{v,w\}\in E} J_e x_v x_w\right)$$
(1)

where $\{J_e\}_{e \in E}$ are **pairwise interactions** and

$$Z(J) = \sum_{X \in \{-1,+1\}^N} \exp(\sum_{e = \{v,w\} \in E} J_e x_v x_w)$$
(2)

is a partition function.

Problem Overview

Question

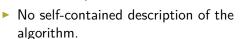
For which graphs G can we compute Z and sample from $\mathbb{P}(S)$?

Fact (Barahona, 1982)

Even when G is a two-level square grid, the task of finding Z is NP-hard.

Fact (Jerrum & Sinclair, 1993)

Even when J > 0, the task of finding Z is #P-complete.


Problem Overview: Planar Zero-field Ising Models

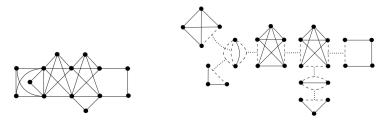
Planar zero-field Ising model - a case when G is planar.

Theorem

Given a planar zero-field Ising model, finding Z and sampling from $\mathbb{P}(S)$ takes $O(N^{\frac{3}{2}})$ time.

 Theorem is due to (Kasteleyn, 1963; Wilson, 1997; Schraudolph & Kamenetsky, 2009; Thomas & Middleton, 2009; 2013).

 Extension to arbitrary genus g with a factor of 4^g (Gallucio & Loebl, 1999).

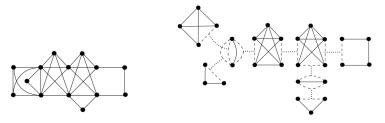

Algorithm Overview: Graph Decomposition

Informal definition

A tree of triconnected components T of graph G is a tree decomposition of G into **triconnected** graphs G_t with shared edges.

Theorem (Hopcroft & Tarjan, 1973)

A tree of triconnected components is unique and can be obtained in O(N + |E|).


Algorithm Overview: Inference of K_{33} -free Zero-field Ising Models

Lemma (Hall, 1943)

Graph G is K_{33} -free if and only if its triconnected components are either planar or K_5 .

Theorem

Given a K_{33} -free zero-field Ising model, finding Z and sampling from $\mathbb{P}(S)$ takes $O(N^{\frac{3}{2}})$ time.

Conclusions

Main results:

- Self-contained description of O(N^{3/2}) inference and sampling of planar zero-field Ising models.
- $O(N^{\frac{3}{2}})$ inference and sampling of K_{33} -free Ising models.
- Implementation of the algorithm https://github.com/ValeryTyumen/planar_ising.

Poster: "Inference and Sampling of K_{33} -free Ising Models", Valerii Likhosherstov, Yury Maximov, Michael Chertkov.

Pacific Ballroom #162