When Samples Are Strategically Selected

Hanrui Zhang

Yu Cheng

Vincent Conitzer

Duke University

Academia in 20 years...

Academia in 20 years...

Academia in 20 years...

CHARLIE WILL DEFINITELY PICK THE BEST 3 PAPERS BY ALICE, AND I NEED TO CALIBRATE FOR THAT.

A **distribution (Alice)** over paper qualities $\theta \in \{g, b\}$ arrives, which can be either a good one ($\theta = g$) or a bad one ($\theta = b$)

The **principal (Bob)** announces a **policy**, according to which he decides, based on the **report** of the **agent (Charlie)**, whether to **accept** θ **(hire Alice)**

The agent (Charlie) has access to n(=50) iid samples (papers) from θ (Alice), from which he chooses m(=3) as his report

The agent (Charlie) sends his report to the principal, aiming to convince the principal (Bob) to accept θ (Alice)

The **principal (Bob)** observes the **report** of the **agent (Charlie)**, and makes the decision according to the policy announced

Questions

- How does strategic selection affect the principal's policy?
- Is it easier or harder to classify based on <u>strategic</u> <u>samples</u>, compared to when the principal has access to <u>iid samples</u>?
- Should the principal ever have a <u>diversity</u> requirement (e.g., at least 1 mathematical paper and at least 1 experimental paper), or only go by total quality?

A "hard" world

- A good candidate writes a good paper w.p. 0.05
- A bad candidate writes a good paper w.p. 0.005
- All candidates have n = 50 papers, and the professor wants to read only m = 1

A "hard" world

- A good candidate writes a good paper w.p. 0.05
- A bad candidate writes a good paper w.p. 0.005
- All candidates have n = 50 papers, and the professor wants to read only m = 1
- A reasonable policy: **accept** iff the reported paper is **good**
- A good candidate is accepted w.p. 1 $(1 0.05)^{50} \approx 0.92$
- A bad candidate is accepted w.p. 1 $(1 0.005)^{50} \approx 0.22$

A "hard" world

- A good candidate is accepted w.p. 1 $(1 0.05)^{50} \approx 0.92$
- A bad candidate is accepted w.p. 1 $(1 0.005)^{50} \approx 0.22$

Strategic selection helps the principal!

An "easy" world

- A good candidate writes a good paper w.p. 0.05 0.95
- A bad candidate writes a good paper w.p. 0.05
- All candidates have n = 50 papers, and the professor wants to read only m = 1

An "easy" world

- A good candidate writes a good paper w.p. 0.05 0.95
- A bad candidate writes a good paper w.p. 0.005 0.05
- All candidates have n = 50 papers, and the professor wants to read only m = 1
- A reasonable policy: **accept** iff the reported paper is **good**
- A good candidate is accepted w.p. 1 $(1 0.95)^{50} \approx 1$
- A bad candidate is accepted w.p. 1 $(1 0.05)^{50} \approx 0.92$

An "easy" world

- A good candidate is accepted w.p. 1 $(1 0.95)^{50} \approx 1$
- A bad candidate is accepted w.p. 1 $(1 0.05)^{50} \approx 0.92$

Now strategic selection hurts the principal!

More questions

- What does the optimal policy look like?
- What parameter(s) determine its performance?

And answers...

Come to our poster!